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Fig. 1. We present differential subspace search for exploring the high-dimensional latent space of a deep generative model, by letting the user perform searches
in (low-dimensional) 1D subspaces, where the search directions are provided through differential analysis of the generative model (left). The user iteratively
performs searches via a slider interface and updates the subspace by pressing the ‘next’ button (right). Our method does not rely on domain- or data-specific
assumptions and can be applied to exploratory tasks for various generative models for images, sounds, and 3D models.

Generative models based on deep neural networks often have a high-dimen-
sional latent space, ranging sometimes to a few hundred dimensions or
even higher, which typically makes them hard for a user to explore di-
rectly. We propose differential subspace search to allow efficient iterative user
exploration in such a space, without relying on domain- or data-specific
assumptions. We develop a general framework to extract low-dimensional
subspaces based on a local differential analysis of the generative model, such
that a small change in such a subspace would provide enough change in the
resulting data. We do so by applying singular value decomposition to the
Jacobian of the generative model and forming a subspace with the desired
dimensionality spanned by a given number of singular vectors stochasti-
cally selected on the basis of their singular values, to maintain ergodicity.
We use our framework to present 1D subspaces to the user via a 1D slider
interface. Starting from an initial location, the user finds a new candidate
in the presented 1D subspace, which is in turn updated at the new candi-
date location. This process is repeated until no further improvement can
be made. Numerical simulations show that our method can better optimize
synthetic black-box objective functions than the alternatives that we tested.
Furthermore, we conducted a user study using complex generative models
and the results show that our method enables more efficient exploration of
high-dimensional latent spaces than the alternatives.
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1 INTRODUCTION
With the recent developments in deep learning, we have seen a
rapid advancement in using machine learning to generate data for
multimedia content; there are many impressive generative models
with applications ranging from images [Karras et al. 2018; Kingma
et al. 2014; Miyato et al. 2018] and sounds [Donahue et al. 2018;
Engel et al. 2019] to 3D models [Chen and Zhang 2019; Umetani
2017], to just list a few. A key to this success is the ability to perform
efficient and effective training using complex network architectures
with more layers and higher-dimensional internal representations
(i.e., latent spaces). For instance, IM-GAN for 3D shapes [Chen and
Zhang 2019] and SN-GANs for images [Miyato et al. 2018] have
128-dimensional latent spaces, while GANSynth for audio [Engel
et al. 2019] has 256. Such richness of network architectures allows
for highly nonlinear representations between the internal latent
variables and the real data, which in turn enables generation of high-
quality data that are almost indistinguishable from the real ones.
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On the downside, excessively high dimensionality makes direct
manipulation of the latent variables notoriously hard for end-users.
Still, it is desired in many applications that the user can adjust the
results and explore neighbor alternatives.
We propose a simple method aimed at efficient user searches in

such high-dimensional spaces. Our method is domain- and data-
agnostic, unlike previous approaches that utilize domain-specific
interfaces [Bau et al. 2019; Brock et al. 2017; Umetani 2017]. In addi-
tion, our method targets extremely high-dimensional latent spaces
with hundreds of variables, in contrast to the existing methods for
exploring general multi-dimensional spaces [Brochu et al. 2007;
Koyama et al. 2017]. Furthermore, our method takes only a pre-
trained generative model as input, unlike the previous approaches
to control data generation [Kingma et al. 2014; Mirza and Osindero
2014] that require the models to be re-trained with specially anno-
tated data, which results in a still high-dimensional space hard for a
user to explore directly.
Our method is built on the concept of optimization and is de-

signed for exploratory purposes. Because the relationship between
the latent variables and the generated data is in general highly non-
linear and multi-peaked, finding the exact target (or in other words,
the globally optimal solution) is thus hard according to a general
understanding of optimization [Nesterov 2018]. Nevertheless, the
ability to find a local optimum would still be useful for the user to
adjust the results and explore neighbor alternatives.
Our key idea is to let the user perform iterative searches, each

of which lies in a much reduced-dimensional subspace, and to con-
struct such subspaces on the basis of local differential analysis of
the generative model. For an efficient search, a small change in such
a subspace should provide a sufficient change in the resulting data.
We develop a general framework that extracts low-dimensional sub-
spaces by performing singular value decomposition on the Jacobian
of the generative model and forming a subspace spanned by a set of
singular vectors stochastically selected on the basis of their singular
values in order to retain the chance to visit all subspaces (i.e., ergod-
icity). We use our framework to present 1D subspaces to the user
via a 1D slider interface (Figure 1). Starting from an initial location,
the user finds a new candidate in the presented 1D subspace, which
is in turn updated at the new candidate location. This process is
repeated until no further improvement can be made.
Numerical simulations show that our method performs much

better for synthetic black-box objective functions than Bayesian
optimization-based ones [Koyama et al. 2017]. We conducted a user
study using pre-trained complex generative models and found that
our method enables more efficient exploration in high-dimensional
latent spaces. We also applied our method to various generative
models for images, sounds, and 3D shapes, as listed in Table 1.

2 RELATED WORK

2.1 Domain-Specific Exploration Methods
High-dimensional latent spaces of generative models are, in general,
intractable for humans to explore without computational guidance.
To allow efficient user exploration, domain-specific methods have
been developed. For generative image modeling, Zhu et al. [2016]
and Brock et al. [2017] presented interactive methods allowing the

user to directly paint colors on the generated image. Likewise, Bau
et al. [2019] presented a method that allows direct annotation to
be made on the generated image for object placement and removal.
Hin et al. [2019] recently proposed a user-in-the-loop framework
for searches in the latent space that incorporates user-provided
annotations on images into the determination of queries presented
to users. These methods achieve efficient latent space exploration
through image-specific formulations and interfaces. For generative
3D modeling, Umetani [2017] demonstrated a 3D model-specific
interface that allows direct manipulation of the shape to easily
explore the latent space.
Recent research on generative adversarial networks [Goetschal-

ckx et al. 2019; Jahanian et al. 2020; Shen et al. 2020; Yang et al.
2019] has shown that high-level semantic meanings may naturally
emerge in the learned models, and directions (either straight or
curved) representing such semantic meanings and useful for human
manipulation can be found via optimization using domain-specific
knowledge (e.g., external classification networks or image features).

Unlike these approaches, our differential subspace search method
does not rely on any domain-specific formulations or specially anno-
tated training data. Thus, it applies to various domains in the same
formulation; we demonstrate its generality to generative modeling
of images, sounds, and 3D models. We believe that domain-specific
approaches are complementary to our work; a combined approach
would allow more efficient exploration.

2.2 General Exploration Methods
Adjusting multiple parameters (typically through slider manipula-
tions) is a ubiquitous task in visual design and graphics. A seminal
work from the user interface point of view isDesign Galleries [Marks
et al. 1997], where the interface provides a two-dimensional gallery
of diverse candidate designs. Another gallery-based interface, Brain-
storm, had been in After Effects [Adobe 2017], where it repeatedly
provided designs sampled stochastically with a controllable vari-
ance.

Involving humans in the analysis of design parameter spaces is an-
other line of work. Koyama et al. [2014] proposed a crowd-powered
method for building a preference model in general parameter spaces,
which can efficiently guide the user’s exploration through tailored
interfaces for spaces with dimensions typically lower than 10. Tal-
ton et al. [2009] proposed a density-estimation-based method for
guiding design exploration and successfully applied it to several
applications including parametric 3Dmodeling with over 100 dimen-
sions; however, this method needs many users to gather sufficiently
large datasets for each application.

The parameter adjustment can also be viewed as an optimization
with a perceptual objective. Interactive evolutionary computation
[Takagi 2001], a human-in-the-loop variant of evolutionary compu-
tation, is one of the seminal approaches in this line. More recently,
Bayesian optimization (BO) has become popular in the machine
learning community [Shahriari et al. 2015; Snoek et al. 2012]. BO is
a global optimization technique for expensive-to-evaluate black-box
functions and is likely to find a reasonable solution with a small
number of function evaluations. To handle perceptual objective
functions, Brochu et al. [2007] formulated a human-in-the-loop BO,
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where the user performs pairwise comparison tasks based on their
preference iteratively. Koyama et al. [2017] extended this technique
so that the user performs line search tasks sequentially, hence it
is called sequential line search (SLS), to solve the original multi-
dimensional problem. This method offers a dramatic improvement
in performance. These human-in-the-loop BOs have been applied
only to relatively lower-dimensional problems (e.g., 6–15), since
BO itself is not effective in high-dimensional problems such as our
target (e.g., 128–512) [Moriconi et al. 2019; Wang et al. 2016].

These previous methods are unaware of the data generation pro-
cess and/or do not work well for high-dimensional spaces. In con-
trast, our method explicitly uses the target generative model in
its formulation and is designed for high-dimensional spaces; our
method differentiates the generative model to obtain effective 1D
search subspaces for each iteration. The resulting user interface
is the same as SLS [Koyama et al. 2017] from the user’s point of
view; however, our subspace selection is not BO-based, but instead
is aware of the local structure of the generative models, thereby
enabling efficient searches in high-dimensional spaces.

2.3 Controlled Training of Latent Spaces
Controlling the training of latent spaces is a promising direction to
facilitate exploration of latent spaces. One such approach is to use
conditional generative models; conditional GANs [Mirza and Osin-
dero 2014] and conditional VAEs [Kingma et al. 2014] allow users to
input conditions to better control the data generation. Yet, finding
an appropriate seed from the high-dimensional latent space remains
a challenging task. Also, this approach needs additional annotated
datasets. Another possibility is to use unsupervised training tech-
niques to learn interpretable latent spaces; for example, InfoGAN
[Chen et al. 2016] encourages the learned latent space to be disentan-
gled without using additional datasets. While this approach is useful
for manual exploration in low-dimensional cases (e.g., small GANs
for the MNIST dataset), it is less useful in high-dimensional cases
since manipulating many (e.g., 256) sliders simultaneously is hard
for users even if each slider has a semantic meaning. Importantly,
these approaches require a new generative model to be trained for
each application.
Our work is orthogonal to this direction: we do not modify the

latent space, but rather analyze the local structure of the generative
model to navigate exploration. Thus, our method allows the use of
pre-trained generative models, as well as these controlled learning
models.

3 EXPLORATION AS SUBSPACE GRADIENT ASCENT

3.1 Problem Formulation
Suppose that we have a generative model f : Z → X, whereZ ⊂
Rn is a high-dimensional latent space, say n ≥ 100, and X ⊂ Rm is
a data space. Suppose that a user is trying to use this model f to
generate a data x , but he or she only has control over the latent space
Z. The quality of x is judged through the user’s own perceptual
goodness function д : X → R, which is unknown to the system and
may even be fuzzy or change during the exploratory task. A larger
value of д indicates higher preference. Accordingly, we have the

following problem:

z∗ = arg max
z ∈Z

д(f (z)). (1)

If д were known to the system, the machinery of optimization
could be used to iteratively update the current best latent vector
z(k ) through a gradient ascent process:

z(k+1) = z(k ) + ∆(k ) = z(k ) + α

(
∂д(z(k ))
∂z

)T
, (2)

where k in parenthesis denotes the iteration count,
(
∂д(z (k ))

∂z

)T
=[

∂д(z (k ))
∂z1

· · · ∂д(z (k ))∂zn

]T
is the gradient of д with respect to z at z(k),

and ∆(k ) = α
(
∂д(z (k ))

∂z

)T
is the increment. Henceforth, we will

shorten ∂д(z (k ))
∂z to ∂д

∂z for brevity. The step size α > 0 is determined
so as to maximize д(f (z(k+1))) (by using e.g., a line search):

α = arg max
α̂

д

(
f

(
z(k ) + α̂

(
∂д

∂z

)T ))
. (3)

If initially z(0) is sufficiently close to the solution, the above iterative
updates will eventually arrive at the global maximum.
In reality, the update (2) is impossible for the computer alone to

perform, because д is unknown. Yet, it is hard for the user alone
because of the high dimensionality of the search spaceZ. In this
work, we develop a method for assisting the update (2).

3.2 Human-in-the-Loop Differential Subspace Search
In viewing each update (2) as a search local to the current candidate
z(k ), our basic idea is to limit the local search to a low-dimensional
subspace that is easy for the user tomanipulate. Because a generative
model f obtained by an advanced machine learning technique may
be highly nonlinear, such a subspace usually cannot be fixed globally
and needs to be chosen locally. Likewise, limiting the local search to
some particular subspace (e.g., themost significant directions) would
leave some subregion inZ unexplored. We designed a method to
avoid such drawbacks.
Formally, we let w ∈ W(z(k )) ⊂ Rl be a vector lying in a low-

dimensional (l ≪ n) subspaceW(z(k )) local to z(k ), and replace the
update (2) by the following one involving the subspace:

z(k+1) = z(k) + ∆̃(k) = z(k ) + pz (k ) (w), (4)

w = arg max
ŵ ∈W(z (k ))

д(f (z(k ) + pz (k ) (ŵ))), (5)

where pz (k ) : W(z(k )) → Z is an operator prolonging the low-
dimensional vector w at the current position z(k ) to the original
search spaceZ. Typically, we choose l = 1 so that the user can easily
search the subspace via a simple slider interface (following Koyama
et al. [2017]). The key points of our technique are 1) how to choose
a suitable subspaceW(z(k )) and 2) how to retain the possibility
to explore all candidates in Z. Our technique is summarized in
Figure 2 and Algorithm 1.
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Fig. 2. We enable user exploration in the high-dimensional latent space through a slider interaction (right). This slider space corresponds to a 1D subspace of
the full-dimensional latent space (left). Different search directions in the latent space (dashed and solid pink arrows) would result in different search directions
in the data space, but most of them would not provide enough change in the data space (dashed pink arrows) due to the skewed distribution of the singular
values of the Jacobian of the generative model. Our differential subspace search constructs an effective subspace (solid pink arrow) by analyzing the Jacobian
and performing stochastic sampling according to the magnitude of its singular values to select the corresponding subspace (left).

Algorithm 1 Differential_Subspace_Search
Input: The goodness functionд; The generative model f ; An initial

guess z(0) (can be a random vector);
Output: The latent vector z∗ that generates the desired data;
1: k ← 0; ▷ k : iteration count
2: while User not satisfied with f (z(k )) do
3: W(z(k )),pz (k ) ← SVD_Reduction( ∂f (z (k ))∂z );
4: User findsw(k ) ∈ W(z(k ));
5: z(k+1) ← z(k) + pz (k ) (w(k)); k ← k + 1
6: end while
7: return z∗ ← z(k )

3.2.1 Subspace Construction. To choose an effective subspaceW(z(k )),
we first write the gradient

(
∂д
∂z

)T
by using the chain rule:(

∂д

∂z

)T
=

(
∂ f

∂z

)T (
∂д

∂ f

)T
, (6)

to reveal the term,

J =
∂ f

∂z
=


∂f1
∂z1

· · · ∂f1
∂zn

...
. . .

...
∂fm
∂z1

· · · ∂fm
∂zn

 ∈ R
m×n , (7)

which does not require any information unknown to the system and
is available through machine learning techniques that involve back
propagation [Linnainmaa 1970; Schmidhuber 2015]. Implementation-
wise, we switch among 1) automatic differentiation, 2) a stochastic
way of automatic differentiation, and 3) finite difference depending
on the required performance (see Section 8.4 for details).
According to the manifold hypothesis [Bengio et al. 2013; Rifai

et al. 2011], common empirical knowledge stating that data in the
real world live on low-dimensional manifolds embedded in a high-
dimensional data space, we can expect that J has a few dominant
components1. Formally, let U ∈ Rm×m , Σ ∈ Rm×n and V ∈ Rn×n ,

1The manifold hypothesis itself does not forbid the generative model to be an isometry,
where the singular values are equal in magnitudes. However, such cases are unlikely to
exist because of the highly nonlinear nature of the generative model.
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Fig. 3. Distributions of the first 64 singular values, sorted in descending
order, for different generative models. The singular values of each model
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Fig. 4. We show the data variations along the directions (i.e., column vectors
of V̂ in (12)) corresponding to the top, 24th, and the median (256th) singular
values (left)) at a point stochastically selected from the 512-dimensional
latent space of PG-GAN for images (detailed in Table 1), as well as the
variations along with three stochastically chosen directions (right). The
center image in each case corresponds to the data at the stochastically
sampled point. The distance, in terms of the latent space, between the
left- and right-most images in each case is 20% of the expected length
between two random points in the latent space, the same as the slider length
discussed in Section 3.2.2. We did not incorporate any approximations in the
computation of the Jacobian or the singular value decomposition. While the
direction corresponding to the top singular value provides enough variation
in the resulting image, the direction corresponding to the median provides
very little. If we choose a direction uniformly randomly, the corresponding
magnitude of the variation is likely to be small.

when we consider the singular value decomposition of J

J = UΣVT , (8)

the diagonal singular value matrix Σ contains a few components
that are much larger than the others, as in Figure 3.
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We consider a low-dimensional approximation Σ̃ to Σ that has
only l non-zero entries. Deterministic construction, say, by always
retaining the l largest entries, would result in ignorance of the re-
maining subspace. This is a problem because we set l to be extremely
small (i.e., l = 1) for ease of user manipulation. Instead, we construct
Σ̃ in a probabilistic way such that

E[Σ̃] = Σ. (9)
Namely, we perform stochastic sampling to choose the non-zero
entries, with a probability proportional to the magnitude of the
singular values. This way, subspaces that influence the data more
are more likely to be chosen. Now, we rewrite (8) as:

J ≈ J̃ = UΣ̃VT . (10)

Because E[Σ̃] = Σ, we have E[J̃] = J. Further, let Σ̂ ∈ Rl×l be the
packed version of Σ̃ retaining all its non-zero singular values, and
let Û ∈ Rm×l and V̂ ∈ Rn×l be, respectively, the l left and right
singular vectors corresponding to the non-zero entries. We have

UΣ̃VT = ÛΣ̂V̂T
. (11)

Hence, the increment ∆(k) in (2) can be approximated as

∆(k ) = α

(
∂д(z(k ))
∂z

)T
= αJT

(
∂д

∂ f

)T
≈∆̃(k ) = α J̃T

(
∂д

∂ f

)T
= αV̂Σ̂T ÛT

(
∂д

∂ f

)T
= V̂w = pz (k ) (w), (12)

where w = α Σ̂T ÛT
(
∂д
∂f

)T
is an l-dimensional vector lying in

W(z(k )) formed by the column vectors of V̂. Now,we haveE[∆̃(k)] =
∆(k ) (suppose thatα is common to ∆̃(k ) and∆(k )), and this increment
∆̃(k ) is anm-dimensional vector but effectively lying in a reduced
l-dimensional subspace. In Section 4.2, we experimentally evaluate
the effect of using this reduced subspace as opposed to the standard
gradient ascent using the full space.
As in Figure 4, moving along a direction with a larger singular

value would result in a larger variation in the data, while taking
a random direction is expected to result in a far smaller variation,
motivating our technique of stochastically selecting the subspace.
In Section 4.4, we confirm this insight using a synthetic example.

3.2.2 Searching in the Subspace. Once the search subspace is con-
structed, we let the user find a single point z(k+1) = z(k ) + ∆̃(k )
through an interface. By selecting z(k+1), the user implicitly manip-
ulatesw = α Σ̂T ÛT

(
∂д
∂f

)T
in the l-dimensional subspace, including

its direction and magnitude, while the user does not need to be
aware of any of α , Σ̂, Û, and ∂д

∂f
. This way, the effect of д is still ac-

counted for by the user, while the l-dimensional subspace suggested
by the system makes the search process much easier than one in
the original full space. We take l = 1 to make the search process
the simplest, so that the user only needs to decide the magnitude
through a line search, without having to care about the direction,
as in Figure 16, where z(k) is displayed at the center of the slider
and the user can search on both positive and negative sides.

This line search is not limited to a locally concave region; to avoid
getting stuck near a local maximum, we allow the user to move
across convex goodness barriers. Specifically, we take the length of
the line search domain to be 20% of the expected length between
two random points in the full latent space, with its center set to z(k ).
We evaluate the effectiveness of this strategy in Section 4.3.

When the user cannot find a better choice in the subspace (i.e.,
optimizing (5) by the user results in the same point as the current
one z(k )), the user can choose to stay at the current point and switch
to another subspace, or to move to another point even if its goodness
is worse. If the current point is still far away from the target, we
encourage the user to follow the latter option, as it is easier to get
away of a local maximum.
Since our method proposes the search direction solely on the

basis of the generative model f (z), this direction probably does not
perfectly align with the user’s preference ∂д

∂f
. However, the user

can still find a point closer to the target in the search direction in
principle, because of the nature of the expected alignment between
two vectors in an effectively low-dimensional space: the expected
absolute value of the dot product between two random vectors in a
10-dimensional space is 0.26, according to (25). Iteratively moving
toward the target eventually allows convergence.

Note that it is also possible to use our technique to obtain a rela-
tively low-dimensional (say l = 6) subspace first, and then use the
sequential line search [Koyama et al. 2017] to enable exploration in
this low-dimensional subspace by using a linear slider. We compare
the performance of our differential subspace search with this hybrid
option as well as other alternatives in Section 4.5.

4 EVALUATION WITH SYNTHETIC FUNCTIONS
Although a natural scenario for our method would be exploratory
tasks, for an objective evaluation, we decided to examine its effec-
tiveness in goal-based tasks: for each task, a target was presented
at the beginning, and it was kept fixed throughout the evaluation.
Before we examined the effectiveness of our method on real gen-
erative models, we did so for synthetic examples in a numerical
simulation without users.

4.1 Designing the Synthetic Functions
We designed the functions f andд separately. We wanted to account
for anisotropy in the synthetic generative function f test : Z → X,
where Z ⊂ Rn and X ⊂ Rm , as well as for noise (non-concavity)
in the synthetic goodness function дtest : X → R.

We constructed the synthetic generative function as a concatena-
tion ofm anisotropic sphere functions:

f testi (z) = (z − s)T Ai (z − s) (i = 1, . . . ,m), (13)

where s ∈ Z is a random shift vector and the metric tensor Ai =

AT
i ∈ Rn×n is designed to account for the anisotropy. Consider-

ing its eigendecomposition Ai = QT
i ÃiQi , we generated a rota-

tion matrix Qi and diagonal matrix Ãi containing the eigenval-
ues as follows. First, we set Ãi = αi diag(ai,1, . . . ,ai,n ) ∈ Rn×n ,
where αi controlled the magnitude of f testi and was uniformly sam-
pled from [0.01, 10.0], and ai,1, . . . ,ai,n were uniformly sampled
from [amin,amax] = [0.01, 1.0] to create anisotropy; setting ai, j to a
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constant irrespective of j would result in an isotropic setting. We
chose amax = 1.0, because the magnitude was already accounted
for by αi , and amin > 0.0 to avoid degeneracy. Next, we constructed
the random rotation matrix Qi by generating a random matrix
and then performing the Gram–Schmidt process. With our design,
10−4 ≤ αiamin ≤ f testi (z )

∥z−s ∥2 ≤ αiamax ≤ αi ≤ 10.
Our synthetic goodness function дtest was based on the Rastrigin

function дRastrigin:

дRastrigin(x) = −Am −
m∑
i=1

(
x2i −A cos(2πxi )

)
, (14)

where the second term A cos(2πxi ) in the summation adds high-
frequency noise (non-concavity) everywhere in the domain. We
included αi to relatively control the noise level of each xi as:

дtest(x) = −A
m∑
i=1

α2i −
m∑
i=1

(
x2i −Aα2i cos (2πxi )

)
, (15)

to account for the fact that x 2
i

∥z−s ∥4 ≤ α2i . We set A to 2.0; setting
A = 0 would have made the model strictly concave. The overall
optimization problem was written as maxz ∈Z дtest(f test(z)), which
has only one global maximum at z = s but many local maxima (for
A , 0), making it fairly difficult to find the optimal solution. We set
Z = [−2.5, 2.5]n andm = 1024 and evaluated the performance of
each methodology with n ∈ {8, 32, 128, 512}.

4.2 Comparison against Gradient Ascent
From (12), our method is effectively a variant of gradient ascent that
performs optimization in the subspace at each iteration, whereas
the standard gradient ascent always works in the full space. We
performed a comparison to see how the difference in the search
direction affects the overall performance when using a concave
version of the synthetic example by setting A = 0 in д. Since the ob-
jective in this case is strictly concave, the step sizes of both standard
gradient ascent and our method were automatically determined via
concave maximization of the 1D subproblem at each iteration.

Figure 5 compares the optimality gaps, i.e., the difference between
the best found function value (д) and the optimal one. Our solution
converges to the same exact solution as the standard gradient ascent.
As expected, because the ascent direction lies in a subspace and thus
is suboptimal compared to the full ascent direction, the convergence
speed of our method is inferior to the standard gradient ascent, but
the difference in performance is small.

4.3 Comparison against Local Line Search
Next, for the non-concave case (A = 2.0), we compare the effective-
ness of setting the line search domain to be 20% of the expected
length of the full latent space (Ours) with that of limiting it to a
locally concave region (i.e., setting the next point to be the closest
local maximum along the line search direction, Ours-local).
As shown in Figure 6, Ours-local easily gets stuck in a local

optimum, leaving a large optimality gap, while Ours is able to sig-
nificantly reduce it. For all our tests shown in this paper (including
those with synthetic examples and generative models), we did not
find any need for adaptively changing the line search domain; it is

long enough for the user to make a large step for exploration, while
also offering tuning, since the data within this length vary smoothly,
as can be seen in our supplementary video.

4.4 Comparison against Uniformly Random Directions
Next, we compare our method with a version using uniformly ran-
domly sampled directions (Random-dir) that has the same line
search domain as Ours. As shown in Figure 7, Random-dir per-
formsmuchworse than ours, leaving a large optimality gap, confirm-
ing the insights from Figure 4. In a skewed high-dimensional space,
a randomly selected direction is likely to fail to provide enough
change in the resulting function values.

4.5 Comparison against Other Alternatives
Next, we compare our method with possible alternatives using the
above design of synthetic functions. Our direct counterpart is 1) the
sequential-line-search (SLS-BO) [Koyama et al. 2017] (see Appen-
dix A for the detailed conditions), which also involves an iterative
search via a 1D slider. The difference is in how the search direction
is chosen; SLS-BO uses Bayesian optimization. Since Bayesian op-
timization is known to be ineffective in high-dimensional spaces,
we also tried 2) a REMBO [Wang et al. 2016] preprocessed SLS-BO
(SLS-REMBO-6D), where the high-dimensional space is projected
onto a stochastically determined low-dimensional (6D) space a pri-
ori, and then SLS-BO is applied to this low-dimensional space. We
also compare 3) a hybrid approach combining our SVD-based dimen-
sion reduction (to 6D) with SLS-BO (Hybrid-6D). In Hybrid-6D,
our SVD-based dimension reduction updates the 6D subspace after
every 10 iterations of the SLS update (in the 6D subspace).
All methods work in a 1D search space in each iteration. For

SLS-BO, SLS-REMBO-6D and Hybrid-6D, the slider length is de-
termined automatically according to Koyama et al. [2017]. Within
the 1D slider space, we uniformly sample 10,001 points to find the
best one, instead of applying local optimization such as hill climbing.
The uniform sampling helps the system to escape local maxima. The
maximum iteration count is set to 100, a number large enough for
our application; in reality, the user is likely to spend approximately
10 seconds in each iteration to explore the 1D space; thus, 100 it-
erations will take approximately 15 minutes, which we believe is
longer than the time the user would expect to spend.

The results are shown in Figure 8. Comparing SLS-BO and SLS-
REMBO-6D, SLS-REMBO-6D shows no performance improve-
ment. This is perhaps due to the choice of the low-dimensional
subspace in REMBO: it is globally fixed, so it cannot adapt to the
highly nonlinear nature of our synthetic function. In contrast, our
SVD-based dimension reduction successfully exploits this non-linear
nature, and Hybrid-6D and Ours offer much smaller optimality
gaps. ComparingHybrid-6D and Ours, we see that Ours gives the
smaller gap, despite its simple algorithmic structure.

We believe that the key difference affecting performance between
the BO-based approaches and ours comes from the intrinsic nature
of BO that 1) does not utilize the gradient and 2) requires learn-
ing of the objective landscape. The gradient used in our technique
is higher-order information (than function values) that, as is well
known in optimization, offers much better convergence. The cost
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Fig. 5. We compare the convergence of our differential subspace search with that of the standard gradient ascent, for the strictly concave case as in Section 4.2.
We performed 10 tests, each with a (different) stochastically sampled initial point. The solid curves show the averaged optimality gap Gavr as a function of the
iteration count, with the filled regions corresponding to Gavr ± 0.4σ , where σ is the standard deviation computed for the 10 tests.
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Random-dir

0

0.5

1

0 20 40 100

Ours

Iterations

O
pt

im
al

it
y

ga
p n = 8× 105

Random-dir

0

0.5

1

0 20 40 100
Iterations

O
pt

im
al

it
y

ga
p n = 32× 105

Ours

Random-dir

0 20 40 100
Ours

Iterations

O
pt

im
al

it
y

ga
p n = 128× 105

0

1

2 Random-dir

0 20 40
0

2.5

5

7.5

100
Ours

Iterations

O
pt

im
al

it
y

ga
p n = 512× 105

Fig. 7. We compare the performance of Ours and Random-dir for the multi-peak synthetic example in Section 4.4. We performed 10 tests, each with a
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Table 1. Generative models considered in this paper.

App. Dataset Network

Image MNIST [LeCun et al. 1998] WGAN-GP [Gulrajani et al. 2017]
Image CelebA-HQ [Karras et al. 2018] PG-GAN [Karras et al. 2018]
Sound NSynth [Engel et al. 2017] GANSynth [Engel et al. 2019]
3D shape ShapeNet [Chang et al. 2015] IM-GAN [Chen and Zhang 2019]

for BO to learn the landscape of a high-dimensional problem seems
intractable. BO-based methods balance local (known as “exploita-
tion”) and global (known as “exploration”) samplings. SLS-BO in
a high-dimensional space tends to perform too much exploitation
at least during the first few hundred iterations, which is very lo-
cal. We tried various settings (see Appendix A), but the tendencies
were similar. As in Figure 9, our method outperforms BO in high-
dimensional spaces even for the concave setting in Section 4.2. The
cost of learning the landscape is also reflected in the performance
of Hybrid-6D; the ten-times fewer updates of the subspaces in
Hybrid-6D presumably lowers efficiency.

5 EVALUATION WITH DEEP GENERATIVE MODELS
First, as an extension to the evaluation using the synthetic functions,
we evaluated the effectiveness of our method on a WGAN-GP [Gul-
rajani et al. 2017] based on MNIST [LeCun et al. 1998], a well-known

dataset of hand-written digits (as in Table 1). Then, we performed
user studies on more complex generative models using the GAN-
Synth (sound) and the PG-GAN (image) generative models. Again,
we focused on goal-based tasks for an objective evaluation.

5.1 Evaluation via Simulation
We compared SLS-BO, SLS-REMBO-6D, Random-dir, Hybrid-
6D, Ours-local, and Ours, with automatic optimization without
users, on a WGAN-GP network (with the architecture shown in
Appendix B) that was trained with the MNIST dataset (as in Table 1).
The latent variables in this case followed a uniform distribution in
[−1, 1]n , with n = 64. Here, f was the network, д the standard L2-
norm between images, and we performed automatic optimization as
in Section 4.5. We sampled 10 pairs of initial and target images, with
the corresponding latent variables uniformly sampled from [−1, 1]n .
As shown in Figure 10, Ours offers a much smaller optimality gap
compared with the alternatives.

5.2 User Study
Next, we recruited two disjoint sets of participants for the user
study: performers to find data as close as possible to the given target
via searches in high-dimensional latent spaces, and evaluators to
evaluate the results of the performers. Based on the results of the
experiments using synthetic examples and the above evaluation via
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sampled initial point. The meanings of the solid curves and the filled regions
are the same as those in Figure 5.

automatic optimization, we chose to compare Ours with SLS-BO
and Random for the following reasons. Since we did not see any
performance improvement for the Hybrid-6D option over Ours,
we decided to discard Hybrid-6D. As a counterpart, we chose SLS-
BO and discarded SLS-REMBO-6D, because SLS-REMBO-6D did
not show any performance improvements over SLS-BO. Further-
more, we included Random, a pure random sampling approach for
generating candidates in the latent space. We chose Random as a
baseline because of its insensitivity to the curse of dimensionality
and also because the user can perform more iterations with Ran-
dom. Before we discuss the details of the two user tests using sound
(GANSynth) and image (PG-GAN) generative models, we describe
the common settings.

5.2.1 User Study Settings. We invited 12 participants (1 female and
11 males, all majors in computer science and aged between 20 and
30) to be performers. They were all novices to searches in high-
dimensional latent spaces, and hence would have had no bias due
to their skill levels. Prior to the study, the performers were given
instructions on how to use the tools (Ours, SLS-BO, andRandom),
and they were asked to try them by themselves for no more than 10
minutes. Ours and SLS-BO had exactly the same user interface (as

(a) (b)

Fig. 11. The user interfaces of our user study. (a) Slider-based interface for
Ours and SLS-BO and (b) the random selection user interface forRandom.
In both interfaces, by toggling the face button to a smile, the current data
will be updated as the “current-best” data when the user presses the next
button.

in Figure 11). They both displayed three data: the target data, the
one corresponding to the slider position, and the current-best data.
In addition, they had a slider and two buttons: the user could explore
different data in the current subspace via the slider, update the data
corresponding to the selected slider position as the new current
data by pressing the next button, and save the current data as the
“current-best” (when pressing the next button) by toggling the face
button to a smile. For Random, we prepared a simple interface that
displayed three data: the target data, the latest one generated by
random sampling, and the current-best data. It had exactly the same
buttons as the interfaces for Ours and SLS-BO. We did not disclose
which interface was ours to the performers during the study.

Below, a session of the user test means the performance by a single
performer in finding a candidate for a single given target data. Each
session for the sound generative models consisted of 2 minutes and
that for the image models 3 minutes. Furthermore, a case means the
study related to a single target data: for a single case of the user study,
each performer was asked to use all three tools in a randomized
order for the same given target data. For each generative model,
each performer was given 6 cases (hence in total 6 × 3 sessions).
To reduce the difference in task interpretation among the per-

formers, we gave them instructions on how to judge the similarities.
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For the sound generative model, we asked them to account for ev-
erything they heard. For the image generative model, we asked them
to focus on personality-related characteristics, and not to account
for the background colors or patterns. To stop the performers from
spending too much time by taking the tasks too seriously, we in-
structed them to perform each slider manipulation within roughly
ten seconds.
To evaluate the results, we asked 13 participants, a completely

different set of people from the performers, to be evaluators to vote
for the tool that provided the final result closest to the target. The
evaluators were given the same instructions as the performers on
how to account for the data similarities to reduce the difference in
task interpretation. The voting was performed for each case of the
same performer separately (i.e., the evaluator saw four data, the
target and the three outcomes), and the votes were gathered for all
performers for the same case.

5.2.2 Stochastically Chosen Initial Data with GANSynth. In the first
study, we gave the performers a set (the set size was fixed to eight)
of random initial data to start with. This was for a more realistic
scenario of exploration. We used GANSynth [Engel et al. 2019], a
pre-trained network with NSynth [Engel et al. 2017] dataset. NSynth
is a large collection of annotated musical notes sampled from indi-
vidual instruments with variety of pitches and velocities. GANSynth
has a 256-dimensional latent space, and the latent variable follows
an n-dimensional normal distributionNn (0,σ 2), where σ = 1 is the
standard deviation (each element of the variable follows an inde-
pendent, identically distributed normal distribution N(0,σ 2)). We
stochastically sampled all the target and initials fromNn (0,σ 2) and
used the same set of initials in all cases and with all performers.
For each case, each performer picked one of the eight initial data to
start with. Because all the data were stochastically sampled, some
of the initial data were already close to a target. We did not reject
such situation in order not to bias the sampling.
Table 2 left shows the voting percentage from the evaluators.

For all the cases, we see that Ours got the most votes on average;
Ours outperformed Random, although Random is insensitive to
the curse of dimensionality and provides more iterations, as well as
the generative model being highly nonlinear. In contrast, SLS-BO
was worse than Random. The supplementary material gives the
detailed votes and resulting sounds.

5.2.3 Controlled Distance Pairs with PG-GAN. Next, to control the
difficulty of the task, we let the performers start with a single given
initial data, with a constant distance between the initial and target
data. For each case, the same initial data was given to all of the
performers. For the test, we used PG-GAN, a pre-trained network
with CelebA-HQ [Karras et al. 2018; Liu et al. 2015], a large-scale
high resolution (1024 × 1024) face attributes dataset. In PG-GAN,
the latent variable lies in a n = 512 dimensional space and follows
Nn (0,σ 2), where σ = 1. We limited the initial and target data to the
95 percentile region centered at the origin, in order to avoid rare data
which are likely to contain artifacts. This corresponds to a hypercube
of [−c, c]n , where c =

√
2σ 2erf−1(0.951/n ) (see Appendix C for the

derivation). We sampled the data pair within the hypercube such
that the initial and target data were both distributed in proportion

Table 2. Voting percentages of each method.

GANSynth PG-GAN

Ours Random SLS-BO Ours Random SLS-BO

Case 1 43.6% 37.8% 18.6% 30.1% 48.1% 21.8%
Case 2 45.5% 30.1% 24.4% 73.1% 24.4% 2.6%
Case 3 56.4% 17.3% 26.3% 54.5% 28.8% 16.7%
Case 4 50.6% 38.5% 10.9% 47.4% 42.9% 9.6%
Case 5 45.5% 23.7% 30.8% 62.8% 14.7% 22.4%
Case 6 46.8% 29.5% 23.7% 60.9% 26.3% 12.8%

Total 48.1% 29.5% 22.4% 54.8% 30.9% 14.3%

Table 3. Scores (1: random sampling, 5: continuous slider) of the question-
naires for Q1 (effectiveness) and Q2 (user experience).

Performer # 1 2 3 4 5 6 7 8 9 10 11 12 Mean

Q1 5 4 4 4 4 5 4 4 4 5 5 5 4.42
Q2 5 2 3 2 5 4 5 3 5 5 5 3 3.92
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Fig. 12. Absolute scores for Case 2 of Section 5.2.3, evaluated by the 13 eval-
uators. The solid curves show the averaged score Savr (over the performers
and evaluators) as a function of time, with the filled regions corresponding
to Savr ± σ , where σ is the standard deviation of the scores.

to Nn (0,σ 2) and simultaneously their distance was identical to the
expected distance (

√
2σ 2n) between two random points following

Nn (0,σ 2). This made the initial and target images fairly distant from
each other in the latent space; hence finding the exact target was a
fairly hard task. To find such initial and target pairs, we performed
rejection sampling as in Appendix D.
The initial and target pair of each case, as well as selected final

results, are shown in Figure 15. Table 2 right shows the voting results
(the detailed votes and resulting images are in our supplementary
material). The tendency of the results follow those in Section 5.2.2.
Ours outperformed Random for most cases except Case 1.
To better see how the performance of the intermediate results

changes over time, for Case 2, we quantitatively evaluated their
qualities. Intermediate results were the “best” thus far during the
session, with the “best” judged by the performer. Because improve-
ments in the intermediate results occur at different timings for the
three tools, we gathered them every 20 seconds.
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regions corresponding to Savr ± 0.4σ , where σ is the standard deviation of
the scores.

Perhaps a rigorous way to quantitatively evaluate the interme-
diate results is to perform paired comparisons, by first gathering a
binary answer for every possible pair of the results and then com-
puting a score on a continuous scale for each result (by, e.g., using
the choix library [Maystre 2018]). However, paired comparison may
be too costly here; the total number of generated results in Case 2 is
201, leading to 20, 100 pairs of results in total, each possibly needing
multiple evaluations to suppress the variance in the score.
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Instead, we gathered absolute
scores (1: very bad to 5: very good)
from the same set of evaluators.
Our pilot study with a small num-
ber of images (4 performers for 3
cases) showed a nice correlation
between the fully paired compar-
ison and the absolute scoring (see
the right inset). Figure 12 shows
the absolute scores averaged over all performers and evaluators,
Figure 13 shows the separate scores of each performer averaged for
all evaluators, and Figure 14 shows the detailed score distribution.
Because we randomized the order of the three tools for the per-
former to use, we expected that on average, each tool would be used
with the same amount of prior knowledge of the latent space. Hence,
we expected that the experimental bias due to prior knowledge in
the results of Figure 12 would be suppressed. However, each line in
Figure 13 may reflect this bias.
Because the scores were given by the evaluators, it is possible

that they are not monotonically increasing. We can see that the
increase in the scores for Ours happens consistently throughout
the entire session, and it occurs much faster than others, whereas
with Random the improvement in the scores only happens infre-
quently during the session and remains constant for most of the
time, because an improvement in the image only happens by chance.
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Fig. 14. Histograms of the absolute scores for the results of Case 2 of Sec-
tion 5.2.3. Each of the top histograms corresponds to the scores of all per-
formers gathered every 20 seconds, and each of the bottom histograms
corresponds to the scores of each performer within the search.

To hear directly from the performers about the effectiveness
and usability of the slider-based approach as opposed to random
selection, we asked them about Q1) which way of viewing differ-
ent candidates was more effective for finding the desired data, Q2)
which way of viewing different candidates was more satisfactory
in terms of user experience, and for Q3) free comments. For Q1
and Q2, the performers were asked to give a numerical score (1:
random sampling – 5: continuous slider-based). During these three
questionnaires, the identity of the tools was still hidden from the
performers. Table 3 shows the results of Q1 and Q2. We can see
that the slider-based approach was in general scored more highly
than random selection in terms of both effectiveness and usability.
For Q3, we got positive feedback for the slider-based approach as
follows: the slider-based approach allows for fine scale tuning and
the modification for specific features, it has the ability to control
which direction to go and less chance to obtain bad results, and
the performers know when they are getting toward the target. On
the negative side, the feature change provided by the slider-based
approach can be occasionally complicated and get stuck in some
specific features.

6 APPLICATION TO VARIOUS GENERATIVE MODELS
In contrast to the user studies where the explorations were per-
formed by novice users, here we show results performed by an
experienced user using our differential subspace search for various
generative deep neural networks for images (MNIST-GAN and PG-
GAN as in Table 1), sounds (GANSynth), and 3D shapes (IM-GAN).
IM-GAN [Chen and Zhang 2019] is a network pre-trained with the
ShapeNet [Chang et al. 2015] dataset, a richly-annotated, large-scale
dataset of 3D shapes. Our user interface is common to these different
generative models (Figure 16).

Figure 17 shows the initial, found, and target data for these gener-
ative models (for sounds, refer to supplementary material). The user
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Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

Initial Ours Random SLS-BO Target

Fig. 15. Initial and target pairs, as well as selected final results for Ours, Random, and SLS-BO, for the six cases of the user study using PG-GAN. Refer to
the supplementary material for the full set of images with a higher resolution.

Fig. 16. Our interface using our differential subspace search is common to
various generative models for images, sounds, and 3d models. The user can
freely explore the subspace of the data space by tweaking the slider and
click the next button to reconstruct the subspace at the selected point.

was able to find results fairly close to the target within 5 minutes.
Interestingly, especially for the images, such data were sometimes
found against pretty different backgrounds; the found and target
point in some cases were distant in terms of the L2-norm in the
data space, but were perceived as being close to each other. With
our differential subspace search, the user retains such a perceptual
metric (i.e., the goodness function) to judge on their own.

7 ADDITIONAL PILOT STUDY OF EXPLORATORY TASK
We conducted an informal pilot study to better understand how our
tool can help exploration in creative design tasks from a qualitative
viewpoint. We asked a designer, who draws manga as a hobby, to use
our tool with the PG-GAN generative model. Specifically, we asked
her to come up with four fictional characters that she would like to
put in her original story by using our tool. We show the exploration

Initial Found Target Initial Found

PG-GAN

IM-GAN
(flight)

IM-GAN
(chair)

Model Target

Fig. 17. Initial and target data pairs and data found by an experienced user
for the generative models for images and 3D models.

results in Figure 18. After the exploratory task, we conducted an
informal interview.2

About the usability of our tool, she said it was “very easy” for her
to “learn how to use the tool and how it works.” She also commented
that our tool would take her “much less time” to become familiar
with it than typical tools that “provide many parameters.” About
the use of our tool in the design process, her impression was that
“the tool is helpful when the design concept is not that clear.” She also
2We conducted the interview in the interviewee’s native language, and thus the follow-
ing comments are a translation from the original language into English.
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Sinister Selfish Impartial Decorous

Fig. 18. Characters found by the designer when using our method in the
additional pilot study. Descriptions of the characters are given below.

commented that our tool helped her “make the concept clearer after
seeing one character after another.” These comments support the
finding that our tool can facilitate exploratory design scenarios. We
asked her about the ability to fine-tune the data. She said she was
“able to achieve detailed modifications” with our tool “even though
the change does not always align” with her desires. This was thanks
to “the smooth feature change during slider tweaking.” However, she
also requested an additional feature for making direct “detailed
modifications” to important features such as “eyes.” We believe this
feature is possible by integrating domain-specific techniques (e.g.,
[Bau et al. 2019; Brock et al. 2017]), and the comment suggests this
direction would be an important future work.

8 DISCUSSION

8.1 On Finding the Exact Target
Finding the exact target in the latent space requires us to find the
global optimum for (1). Since the generative model is in general non-
concave and highly nonlinear, such an optimization is NP-hard, and
finding the exact target is impractical. We believe that our method
offers a reasonable solution to such a hard task; with it, the user can
likely find a result with a resemblance to what they had in mind in
a practical amount of time (e.g., within 5 minutes).

8.2 General vs. Domain-specific Search
Ourmethod aims for efficient exploration in high-dimensional latent
spaces, which we believe is a vital step toward fully eliciting the
power of generative models. We intentionally tried to construct our
method to be as simple and general as possible, for it to be applicable
to various generative models. However, we are not against domain-
specific approaches, which, we believe, are complementary to our
work.

Some GAN based generative models may admit directions (either
straight or curved) that represent semantic meanings [Goetschalckx
et al. 2019; Jahanian et al. 2020; Shen et al. 2020; Yang et al. 2019].
Our method does not exploit such useful properties. As a result, the
proposed directions would in general change multiple attributes at
the same time and result in unintuitive manipulation. It would be
important to combine our method with domain-specific approaches
to exploit such meaningful directions to allow for manipulations
limited to a manner the user intends.
It would be also interesting to uniformize perceptual changes

along search directions. For instance, we could incorporate a (dif-
ferentiable) map h : X → X′ from the original data space X to
a data space X′ that is more perceptually uniform (e.g., CIELAB
for colors and mel-scaled spectrogram representation for sounds)
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Fig. 19. Validation of our approximate Jacobian computation and singular
value decomposition. For each of the three models, we stochastically sam-
pled a point in the latent space, computed the ground truth Jacobian and
its singular value decomposition without any approximation, and sorted
the right singular vectors (the column vectors of V) according to their corre-
sponding singular values. Likewise, we computed the version with different
levels of approximations, with the approximation detailed in Section 8.4.
Then, we sorted the right singular vectors. For GANSynth, the numbers
shown below the plots are the reduced data dimension after down-sampling,
and for PG-GAN and IM-GAN, the numbers are the data dimension for the
Jacobian computation. For both sets of right singular vectors, we took the
top 14 vectors and computed the dot products for all their combinations, to
measure the similarities of the directions. Because the user can move in pos-
itive and negative directions, we took the absolute values of the dot product.
The results are presented in matrix form (the exact and approximate versions
are in the rows and columns, respectively, and closer to the top and left
corresponds to larger singular values). The ideal case is the identity matrix,
but we believe our approximation is doing a good job, because the absolute
cosine values are much larger (the green, yellow and reddish regions) than
the very low expected absolute cosine value, 0.035, between two uniformly
random vectors in a 512-dimensional space, according to (25). The order
of the vectors may be inverted for those with close singular values, due
to the randomness in the approximation. Also, we are interested in more
accurately hitting the true directions with larger singular values than those
with smaller ones.

and use the modified Jacobian J′ = ∂h(f (z(k )))/∂z. We could also
reparameterize the latent variables according to Lindow et al. [2012].

In addition, an application-specificway of presenting initial points
may be more beneficial than giving a single random point. For in-
stance, it is possible to show the user a set of stochastically chosen
points in a style like Design Galleries [Marks et al. 1997] or Brain-
storm [Adobe 2017].

8.3 Different Subspace Dimensionalities
With our differential subspace search approach, we explored the
case of l = 1, choosing a one-dimensional slider as the interface.
It would be interesting to investigate interfaces in higher dimen-
sions. We have also demonstrated the option of using our subspace
construction to find a moderately low dimensional (l = 6) subspace
and combining it with the sequential line search technique (as in
Hybrid-6D in Section 4.5). Investigating the performance change
due to a different choice of l would also be interesting.
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8.4 Approximate Computation for Faster Performance
As long as the computation is fast enough, we can use automatic
differentiation to compute the full Jacobian J ∈ Rm×n before per-
forming singular value decomposition. We did so for the synthetic
examples. If the performance with this option is not high enough,
which may be caused by the availability of only modest computa-
tional resources or lack of an efficient implementation of automatic
differentiation, there are several options to incorporate approxima-
tions for faster performance. For the MNIST case, we employed
finite differences. For the other generative models described in this
paper, we employed further approximations below for interactive
updates (5 seconds at most, for a computer with an Intel® Core™ i7-
8086K 4GHz CPU, 16GB main memory, and an NVIDIA® GeForce®
GTX 1080 GPU with 8GB memory).

For PG-GAN and IM-GAN, we stochastically sampled 50 dimen-
sions (i.e., m = 50) from the data space and then performed au-
tomatic differentiation to obtain a reduced dimensional Jacobian
J′ ∈ R50×n . This effectively saved time in the Jacobian computation
as well as in the singular value decomposition. For GANSynth, we
used finite differences to compute the full Jacobian and then down-
sampled the data dimension to 1024 (by removing rows). The use
of finite differences here was because of the unavailability of an
efficient implementation of automatic differentiation in the corre-
sponding library, while the down-sampling was for accelerating the
singular value decomposition.
It is interesting that even with such a small number of elements

to approximate the Jacobian or the singular value decomposition,
we could still recover the effective directions, as in Figure 19. This
is perhaps because of the highly skewed distribution of the singular
values of the Jacobian, which is effectively ‘low’ rank (if we truncate
the singular values at a small threshold) and in turn allows for nice
recovery from only a small fraction of its elements [Candès and
Recht 2009].

9 CONCLUSIONS AND FUTURE WORK
We have proposed differential subspace search, a human-in-the-loop
technique for exploring high-dimensional latent spaces of generative
models, whose dimensionality can be as high as a few hundred.
Our method does not rely on domain- or data-specific assumptions
and takes a pre-trained network as input. The key is to iteratively
construct a low-dimensional subspace based on local analytics of the
generative model, and let the user perform search in this subspace.
We have demonstrated its utility via 1D slider interfaces.

To construct the subspace, we apply singular value decomposi-
tion to the Jacobian of the generative model and form a subspace
spanned by a few singular vectors stochastically selected on the
basis of their corresponding singular values, to maintain ergodicity.
Experimental results show that our method can better optimize
synthetic black-box objective functions than the alternatives. Fur-
thermore, we conducted a user study using complex generative
models and found that our method enables the user to efficiently
explore high-dimensional latent spaces.
At a high level, we have only scratched the surface of various

ways to use the skewed distribution of the singular values of the

Jacobian of the generative model for efficiently exploring a high-
dimensional latent space with a low-dimensional interface. This
idea can be extended in multiple ways. First, our technique builds
on (perhaps) the simplest (yet powerful) optimization framework,
gradient ascent, which uses only first-order information. It would be
interesting to explore how higher-order information, such as curva-
ture, can facilitate the search process, e.g., by allowing exploration
in a curved subregion. Studying the utility of our method for choos-
ing other (l , 1) dimensional subspaces, as well as its combination
with conditional generative models or domain-specific approaches,
would be also interesting. In this work, we only examined a small
number of generative models; it would be interesting to see how
well our method works for other models, such as body shapes and
hair styles. Extending our method to high-dimensional parameter
or design spaces (not necessarily for deep generative models) is
another interesting direction.
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A SEQUENTIAL-LINE-SEARCH CONDITIONS
The sequential-line-search (SLS) method [Koyama et al. 2017] needs
some conditions to be selected as follows.

• Kernel choice: The original paper used the automatic rele-
vance determination (ARD) squared exponential kernel [Ras-
mussen and Williams 2006] for the Gaussian process (GP)
prior. Another popular choice is the ARD Matérn 5/2 kernel,
which was recommended by Snoek et al. [2012]. It is unknown
which kernel is more suitable for SLS.
• Kernel hyperparemters: The original paper assumed a log-
normal prior distribution: LN(log 0.5, 0.1) (whose median is
0.5) for every kernel hyperparameter. As we handle higher-
dimensional problems than theirs, it is not trivial whether
this setting is still feasible or other settings are necessary.
• Joint estimation: The original SLS jointly estimates both the
latent goodness values on the observed points and the appro-
priate kernel hyperparameters in the form of the maximum a
posteriori (MAP) estimate. However, we could also estimate
only the goodness values and leave the hyperparameters fixed.
This alternative approach reduces the computation cost and
also has a chance to improve the optimization convergence if
we provide appropriate hyperparameters.

To determine which conditions should be used in our experiments,
we ran optimization sequences for different combinations of the
conditions using the synthetic test function defined in (13), (15)
as well as an isotropic Gaussian function, both in 8-, 64-, and 512-
dimensional spaces. As a result, we found that the original conditions
performed reasonably well, and there were no obvious differences in
optimization convergence between the different conditions (except
when we set very small kernel hyperparameter values, which re-
sulted in slower convergence). Using a fixed set of hyperparameters
was helpful to reduce the computation cost, but the reduction was
marginal and not significant for a reasonable iteration count (< 50)
in human-in-the-loop use. Therefore, we decided to use the same
conditions as in the original paper.

B ARCHITECTURE OF MNIST GENERATOR
The MNIST generator used in Section 5.1 is detailed in Table 4.
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Table 4. Network architecture of the MNIST generator.

Generator Output Size ksize kfilters Activation

z ∼ U (−1, 1) (64) - - -
dense (128) - - ReLU
dense (512) - - ReLU
reshape (1, 1, 512) - - -
deconv2d (3, 3, 256) 3 256 ReLU
deconv2d (7, 7, 128) 3 128 ReLU
deconv2d (14, 14, 64) 3 64 ReLU
deconv2d (28, 28, 1) 3 1 sigmoid

C ON THE BOX SIZE OF THE 95 PERCENTILE REGION
For the one-dimensional case, the probability p that a random vari-
able generated according to N(0,σ 2) will lie in [−c, c] is given by

p =

∫ c

−c
dx√
2πσ 2

exp
(
− x2

2σ 2

)
= 2

∫ c

0

dx√
2πσ 2

exp
(
− x2

2σ 2

)
. (16)

Let t = x√
2σ 2 , we have dt =

dx√
2σ 2 , t : 0 7→ c√

2σ 2 as x : 0 7→ c and

p =
2√
π

∫ c√
2σ 2

0
exp(−t2)dt = erf

(
c√
2σ 2

)
. (17)

Hence, we arrive at

c =
√
2σ 2erf−1(p). (18)

Next, because of the independence of the dimensions in Nn (0,σ 2),
if we set p = 0.951/n , the probability that an n-dimensional point
lies in [−c, c]n becomes pn = 0.95.

D GENERATING RANDOM DATA PAIRS
First, we forget about the hypercube and generate a pair of data (zA
and zB ) such that their distance is identical to a given one L: ∥zA −
zB ∥ = L and that the probability to generate such a pair p(zA,zB ) is
proportional toq(zA)q(zB ), whereq(z) = 1

(2πσ 2)n/2 exp(−
∑n
i=1

z2i
2σ 2 )

is the n-dimensional normal distribution Nn (0,σ 2). We parameter-
ize zA and zB using their mid point zC = 1

2 (zA + zB ) and the unit
vector d pointing from zA toward zB , so that zA = zC − L

2d and
zB = zC +

L
2d . Because of the isotropy of the normal distribution,

d is uniformly distributed in the n-dimensional unit hypersphere.
So, we first sample d , by sampling each component of d according
to N(0, 1) and normalizing d . Next, with d fixed, we have

q(zA)q(zB ) =
(

1
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− 1
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∑
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2

)2 ª®®¬ .
(19)

Thus, zC can be sampled according to Nn
(
0,

(
σ√
2

)2)
. After we

sample zC , we check whether zA and zB lie inside of the hypercube.
If not, we redo the sampling from the beginning.

E ALIGNMENT BETWEEN RANDOM VECTORS
Here, we consider the alignment between two unit vectors s,x ∈ Rn ,
each uniformly distributed in the (n − 1)-sphere Sn−1, with their
alignment measured by the length Lxp of the projected vector xp
of x onto s (i.e, Lxp = |s · x |). Without loss of generality, we can set
s to (1, 0, . . . , 0)T .

We parametrize x by using hyperspherical coordinates, a gener-
alization of the usual spherical coordinates to Rn , as
x = (cosϕ1, · · · , sinϕ1 · · · sinϕn−2 cosϕn−1, sinϕ1 · · · sinϕn−1)T ,

(20)
where 0 ≤ ϕ1, · · · ,ϕn−2 ≤ π and 0 ≤ ϕn−1 ≤ 2π , and compute the
expectation E[Lxp ].
Under the hyperspherical parametrization, Lxp = | cosϕ1 | and

the distribution Pr(0 ≤ ϕ1 ≤ Φ) of ϕ1 becomes

Pr(0 ≤ ϕ1 ≤ Φ) = Sn−1(0 ≤ ϕ1 ≤ Φ)
Sn−1

, (21)

where Sn−1 is the surface area of the Sn−1, and Sn−1(0 ≤ ϕ1 ≤ Φ)
is the area of its subset such that 0 ≤ ϕ1 ≤ Φ. Sn−1 is given by

Sn−1 =
∫ ϕ1=π

ϕ1=0
· · ·

∫ ϕn−2=π

ϕn−2=0

∫ ϕn−1=2π

ϕn−1=0

����det ( ∂x

∂(ϕ1, · · · , ϕn−1)T
)����dϕ1 · · ·dϕn−1

=

∫ ϕ1=π

ϕ1=0
· · ·

∫ ϕn−2=π

ϕn−2=0

∫ ϕn−1=2π

ϕn−1=0
sinn−2 ϕ1 sinn−3 ϕ2 · · · sinϕn−2dϕ1 · · ·dϕn−1

=

∫ ϕ1=π

ϕ1=0
sinn−2 ϕ1dϕ1 · · ·

∫ ϕn−2=π

ϕn−2=0
sinϕn−2dϕn−2

∫ ϕn−1=2π

ϕn−1=0
dϕn−1 . (22)

By letting Ik =
∫ ψ=π
ψ=0 sink ψdψ , we have Sn−1 = In−2In−3 · · · I12π .

Likewise, Sn−1(0 ≤ ϕ1 ≤ Φ) =
∫ ϕ1=Φ
ϕ1=0 sinn−2 ϕ1dϕ1In−3 · · · I12π .

Hence, the probability density p(ϕ1) is

p(ϕ1)dϕ1 = dPr(0 ≤ ϕ1 ≤ Φ) = dSn−1(0 ≤ ϕ1 ≤ Φ)
Sn−1

=
sinn−2 ϕ1dϕ1

In−2
.

(23)
Hence, we have

E[Lxp ] =
∫ π

0
| cosϕ1 |

sinn−2 ϕ1dϕ1
In−2

=
2

In−2

∫ π
2

0
cosϕ1 sinn−2 ϕ1dϕ1 =

2
(n − 1)In−2 . (24)
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2√
2πn

1
E[L

xp ]
(25)

nWith the beta function B(a,b) =
2
∫ π

2
0 sin2a−1 θ cos2b−1 θdθ , we have

In−2 = B
(
n−1
2 ,

1
2

)
. Because of the

relation B(a,b) = Γ(a)Γ(b)
Γ(a+b) , where

Γ(x) =
∫ ∞
0 tx−1e−tdt is the gamma

function, and Γ(1/2) = √π , we have
In−2 =

√
πΓ

(
n−1
2

)
/Γ ( n

2
)
. Thus, we arrive at

E[Lxp ] =
2

(n − 1)√π
Γ

( n
2
)

Γ
(
n−1
2

) = 2
n
√
π

Γ
(
n+2
2

)
Γ

(
n+1
2

) . (25)

Asymptotically, E[Lxp ] ≈ 2√
2πn

and is of order 1/√n.
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