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Application of our method to Ellie (scene data (c) Blender Studio, licensed under CC BY 3.0)

Figure 1: (Top) Taking an object and its simple rendering, as well as a static exemplar image with annotations as input, our
method can generate animations with the stroke styles given via the exemplar for changes in the viewing and lighting condi-
tions and object shapes (possibly with a change in topology). (Bottom) Application of our method to a complex animation.

ABSTRACT
We present stroke transfer, an example-based synthesis method
of brushstrokes for animated scenes under changes in viewpoint,
lighting conditions, and object shapes. We introduce stroke field for
guiding the generation of strokes, consisting of spatially varying
attributes of strokes, namely, their orientations, lengths, widths,
and colors. Strokes are synthesized as the integral curves of the
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stroke field. In essence, we separate elements that constitute the
artistic stroke into style-specific transferable elements and instance-
intrinsic ones. To generate the stroke field, we first compute a set
of vector fields that reflect the instance-intrinsic elements and then
combine them using style-specific weight functions learned from
exemplars, with the weights computed in a proxy feature space
shared among a variety of objects. The rendered animation using
our method captures time-varying viewpoint, lighting conditions,
and object shapes, as well as the artistic style given in the form of
exemplars.

CCS CONCEPTS
• Computing methodologies → Non-photorealistic render-
ing.

KEYWORDS
Non-photorealistic rendering, stroke-based rendering, example-
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1 INTRODUCTION
Brushstrokes in paintings reflect artists’ style and individuality. For
instance, (post-)impressionists, including Vincent van Gogh, make
use of expressive brushstrokes to convey vivid and striking im-
pression of the world in their own unique views. Brushstrokes are
common in a variety of art forms, andmany of them comewith well-
developed computer-assisted tools, including oil paintings [Baxter
et al. 2001; Chen et al. 2015], crayon drawings [Rudolf et al. 2003],
watercolor paintings [Curtis et al. 1997], and Indian-ink paintings
(also known as moxi or sumie) [Chu and Tai 2005]. Beyond tradi-
tional art forms, where brushstrokes exist on the 2D canvas or image
plane, digital forms, such as WYSIWYG NPR [Kalnins et al. 2002],
Deep Canvas [Katanics and Lappa 2003], and OverCoat [Schmid
et al. 2011], allow brushstrokes to act like decal textures tied directly
with the target curved surfaces in the 3D space.

When animated, the styles of brushstrokes make the films ex-
ceptionally stand out from others, with examples being “Loving
Vincent” [Kobiela and Welchman 2017] (literally) in the style of
Vincent van Gogh throughout the film with nearly 64,000 frames
painted manually by more than 50 painters [Mackiewicz and Melen-
dez 2016], and “The Tale of The Princess Kaguya” [Takahata 2014]
in the style of Indian-ink painting. The high demand in manual
work, however, makes the styles of brushstrokes hard to be applied
in animations more broadly.

Example-based synthesis of artistic styles is thus a promising
direction to animated expressions of brushstrokes. Typical prior art
takes user drawn images as inputs and tries to stitch 2D patches of
the input images together to reconstruct a target drawing with the
same artistic style (e.g., [Bénard et al. 2013; Fišer et al. 2016]).

In the painting process in the real world, the artist observes an
object in the 3D space and draws it on a 2D canvas. Hence, the
resulting brushstrokes usually exhibit a combination of both 2D
and 3D effects [Durand 2002]: the strokes may follow the smooth
illumination change on the curved surface, or may follow the view-
dependent silhouette lines apparent in the 2D image plane.

We study example-based synthesis of brushstrokes with these
geometric backgrounds in consideration, aiming at relating strokes’
attributes with the artist’s (usually unconscious) intension in fol-
lowing the silhouette, shading, and/or geometry of the target object,
and transferring the intended stroke styles given as an exemplar to
an animation sequence of a new target (Fig. 1).

We view an art form with brushstrokes as a collection of strokes
registered on the target 3D surface1 as in WYSIWYG NPR [Kalnins
et al. 2002], Deep Canvas [Katanics and Lappa 2003], and Over-
Coat [Schmid et al. 2011], though these strokes may vary over time
with coherence upon animation. We recognize the stroke styles as
their orientations, colors, widths, and lengths. Mathematically, we
1Note that it is also possible to view the brushstrokes as being registered on the 2D
canvas. The choice of the target domain is rather a matter of taste.

introduce stroke field to represent the collection of strokes, defined
as sections of a vector bundle over the surface representing the
stroke orientation as well as stroke color, length, and width.

Given a 3D object2 and a setting for the camera and lighting, we
render a static image with simple (diffuse and specular) shading,
and let an artist provide an exemplar by drawing strokes on the
image and annotations for the stroke styles. At the core of our
method, we learn from the given exemplar amodel to automatically
generate the stroke field for synthesizing the strokes for a given
new and/or animated setting. To decouple the transferable style-
specific elements from the instance-intrinsic elements, we formulate
our model as a map from a proxy feature space, valid for the new
setting, to the weights for combining canonical sections, or overly
determined bases, of the stroke field. For both the features and
canonical sections, we account for the geometry (e.g., curvature
and normal), illumination (e.g., diffuse and specular lighting), as
well as the viewpoint (e.g., view dependent silhouette lines).

Given new settings for a (new) 3D object, view, and lighting, we
compute the canonical sections anew and use the learned model
with the features at each point on the surface to predict the weights
for linearly combining the newly computed canonical sections to
generate the new stroke field. We in addition perform filtering via
optimization for spatial and temporal coherence. The brushstrokes
are finally generated as integral curves of the stroke field.

We evaluate our method quantitatively in terms of the recon-
struction error of the regression for the orientations (Fig. 4), and
qualitatively by a visual inspection for the colors (Fig. 5), widths,
and lengths.

Our novelty mainly lies in our formulation that enables the
decomposition of the instant-intrinsic elements and style-specific
elements by representing stroke styles by a simple (linear) represen-
tation with learnable weights. Our framework enables automatic
stroke transfer for painterly drawings with 1) learned stroke styles
(unlike many previous work with hard-coded formula (e.g., [Hegde
et al. 2013] §3.3) for determining the orientations), 2) only a small
amount of user input (entire animation generated using only a
single exemplar), and 3) no stitching artifacts by construction as
we treat each stroke separately (unlike patch-based approaches).
Our approach offers an interpretable representation of brushstrokes
since the importance of a certain factor is reflected by the weight
in the linear representation. For example, a particular style may be
analyzed and described as “near the boundary, the artist tends to
align the strokes along the boundary.” We show applications of our
method (Fig. 1) to animations of object shapes, lighting conditions,
and viewing conditions.

2 RELATEDWORK
2.1 Expressive Brushstrokes
There have been a vast number of prior art for expressive painterly
rendering. We refer to Hertzmann [2003] and Hegde et al. [2013]
for comprehensive surveys. A standard pipeline for automatic gen-
eration of a painterly rendering is to first construct an orientation
field for the alignment of the strokes, and perform placement of

2This is different from Loving Vincent [Mackiewicz and Melendez 2016], where the
input to the artists is an image sequence encoding shading, lighting, and silhouettes.
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Figure 2: Illustration of our idea. Given a 3D object and its simple rendering (left), we ask an artist to draw an exemplar together
with annotations (right). We also extract instance-intrinsic features and canonical sections (or overly determined bases of the
orientations), and learn a style-specific model that converts the set of features into a set of weights, which work as coefficients
for the canonical sections to synthesize the orientations, tominimize the error between the synthesized orientations and those
from the exemplar. The learned style-specific weights can then be reused for the synthesis for other objects.

individual strokes using the orientations. Our framework builds on
this pipeline as well.

For generating animated painterly drawings (including fully
manual ones and semi-automatic ones), one could let the artist
draw frame by frame [Kobiela and Welchman 2017; Mackiewicz
and Melendez 2016], provide directional stroke fields [Meier 1996],
or paint key frames [Bassett et al. 2013] on 3D geometries via Over-
Coat [Schmid et al. 2011]. Here, we focus on automatic generation
using a few exemplars for reducing the painting workload.

2.2 Example-based approaches
There are different aspects for what an ‘example’ can mean in
expressive painterly rendering. The first is individual stroke (e.g.,
[Lu et al. 2013; Zheng et al. 2017]), where the way for synthesizing
the texture of a single stroke is learned from exemplars. The second
is mixing (e.g., [Lu et al. 2013]), where realistic color mixing of
pigments (as opposed to the Kubelka-Munk model [Kubelka and
Munk 1931]) is learned from exemplars.

The third is the compositions of strokes in the image space, where
the patches of the input 2D image is stitched together to reconstruct
a target image via image analogies [Hertzmann et al. 2001] for an
animated 3D scene [Bénard et al. 2013], or its extensions to use
more advanced features from illumination [Fišer et al. 2016; Sýkora
et al. 2019] or photorealistic inputs [Jamriška et al. 2019]. One could
also use deep neural networks [Gatys et al. 2016] or a combination
of a patch-based approach with deep neural networks [Futschik
et al. 2021; Texler et al. 2020] for the reconstruction of the image.

Our focus is the compositions of the individual strokes in the
stroke space, i.e., the mechanism to generate a guide (including
orientation fields) for placing individual strokes. By synthesizing
each stroke in separate, we are free from stitching artifacts that
may occur in 2D patch-based approaches. There have been meth-
ods for example-based placing of strokes in a part of the object
region, including those for stylized silhouettes [Cardona and Saito
2015; Kalnins et al. 2003; Northrup and Markosian 2000; Singh and
Schaefer 2010], for representative feature lines of fur, grass and
trees [Kowalski et al. 1999; Markosian et al. 2000], and for hatch-
ing in pen-and-ink illustration [Haga et al. 2001; Kalogerakis et al.
2012]. We in contrast focus on placing the strokes in the entire
visible region for an expressive painterly style drawing. Inspired
by prior art on painterly drawings [Hegde et al. 2013; Hertzmann
2003; Meier 1996], we learn an interpretable model for determining
the colors, flow, and sizes needed to synthesize the brushstrokes.

2.3 Vector and Tensor Fields, Drawing Strokes
Our method constructs vector fields to guide the generation of
brushstrokes. There have been methods for designing user-guided
vector fields on 3D sufaces [Fisher et al. 2007; Zhang et al. 2006]
and its extension to animations [Chen et al. 2011], as well as meth-
ods using vector fields for texture synthesis [Liu et al. 2013; Turk
2001; Xu et al. 2009], hair design [Fu et al. 2007], curvature de-
sign [Iarussi et al. 2015], hatching [Kratt et al. 2017], generating
integral curves [Ray and Sokolov 2014], and remeshing for isotropic
triangular or quad-dominant meshes [Jakob et al. 2015]. Building
on the discrete differential geometry aspects of these methods, we
focus on how to learn the generation of vector fields for synthe-
sizing brushstrokes using exemplars, avoiding having the user to
directly design a spatially and temporally coherent vector field.

For those styles, such as a pencil drawing, with which only
the trajectory of the strokes matters, the N-RoSy fields and cross
fields (e.g., [Kagaya et al. 2011; Zhang et al. 2007]) that do not
encode the sign of the orientation are more suitable alternatives
than vector fields. Depending on the style, the sign of the orientation
is sometimes hard to tell from the exemplar or even cannot be
determined in a consistent way.We leave the extension using tensor
fields as a future work.

The strokes can be generated on the 2D screen space using an
image based technique (e.g., [Huang et al. 2013; Spencer et al. 2009])
or on the 3D object space (e.g., [Kalnins et al. 2002; Katanics and
Lappa 2003; Schmid et al. 2011]) like ours. In terms of the styles,
the choice is most likely a matter of taste. Implementation-wise,
there is no free lunch; working in the object space is simple because
the consistent handling of occluded strokes is achieved for free at
the cost of processing all strokes including hidden ones, whereas
working in the screen space is computationally more efficient if
special care is paid for the visibility near a silhouette or occluded
region in a temporally coherent way. We choose to work in the
object space for simplicity.

3 OVERVIEW
Given a target (possibly animating) 3D object together with lighting
(Fig. 2), with its surface expressed as a time-varying manifold𝑀 (𝑡),
we generate a set of time-varying and view-dependent brushstrokes
S(𝑡) registered on the manifold. For creating plausible and lively
brushstrokes, not only the object shape and illumination, but also
the 2D view play important roles. For example, if the object is
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zoomed in, we would need more strokes to fill in the space, as
the widths of the strokes are fixed in the image space. Therefore,
our model for generating S(𝑡) takes the geometry and topology of
𝑀 (𝑡), the lighting 𝐿(𝑡), as well as the view 𝑉 (𝑡) into account.

We first consider one frame at a time, and discuss time evolution
later. We model the brushstrokes as the realization (§6) of a stroke
field (§5) to guide the generation. In reality, the brushstrokes drawn
by an artist can be thought of as the superimposition of realiza-
tions of multiple stroke fields. We model each of such stroke fields
independently.

As depicted in previous work (e.g., [Hegde et al. 2013; Meier
1996]), a stroke is attributed by its position, orientation, length,
width, color, and texture. Our stroke field is intended to encode these
information, which may either vary smoothly or discretely (i.e., per-
stroke) over the manifold. For each attribute, our framework can
be configured to flexibly adapt to the smoothness or discreteness3.
By default, we model the orientations as a smoothly varying vector
field, with randomness to each stroke added later on during stroke
generation while other attributes, colors, widths, and lengths, are
modelled per-stroke. This choice is made since the orientations of
two adjacent strokes are likely to be similar in a usual painterly
drawing, whereas colors, widths, and lengths vary significantly
giving the liveliness or expressiveness to the style.

Mathematically put, a stroke field consists of the following data:
at each point 𝑝 ∈ 𝑀 , we have 𝒖 (𝑝) ∈ 𝑇𝑝𝑀 , a tangent vector rep-
resenting (unnormalized) stroke orientation; 𝑙 (𝑝) ∈ R, a scalar
representing stroke length4;𝑤 (𝑝) ∈ R, a scalar representing stroke
width; 𝑪 (𝑝) ∈ R3, a tuple of scalars representing stroke color in
RGB. Scalar fields 𝑙 ,𝑤 , and 𝑪 are nothing but functions on𝑀 . The
vector field 𝒖 is a section of the tangent bundle 𝜋 : 𝑇𝑀 → 𝑀 ; a
section of 𝜋 is a map 𝑠 : 𝑀 → 𝑇𝑀 that satisfies 𝜋 ◦ 𝑠 = 𝑖𝑑 , where
𝑖𝑑 is the identity.

Our core idea is to decompose various factors that produce ar-
tistically plausible strokes so that strokes can be easily edited and
transferred. We first construct 𝑁𝐴 = 6 canonical sections5 𝐴𝑖 of𝑇𝑀 ,
each reflecting a different property of the input; those accounting
for the geometry of𝑀 , those for the illumination 𝐿, as well as those
for the view-dependent silhouette 𝑉 . We discuss the construction
of the canonical sections 𝐴𝑖 in §4.1.

Another key idea is that we map each point 𝑝 ∈ 𝑀 to a fea-
ture space by the feature map 𝜙𝐿,𝑉 : 𝑀 → R𝑁𝐹 that encodes the
local features in the vicinity of 𝑝 in the manifold 𝑀 as well as in
the 2D image 𝑄 rendered with the given 𝐿 and 𝑉 . We denote by
Π : 𝑀 → 𝑄 and Π−1 : 𝑄 → 𝑀 the correspondence between
the point on the manifold and the rendered image6. We consider
an 𝑁𝐹 = 9 dimensional feature space with each coordinate repre-
senting (lighting-dependent) illumination, (geometry-dependent)
normal and curvature features, and (view-dependent) distances to
3Positions are always discrete.
4We found that decomposing the length from the orientation this way allows for more
faithful adaptation to the given exemplar.
5The rank of𝑇𝑀 is two, and any section can be written as the sum of two independent
sections weighted by two scalar functions on 𝑀 . However, we construct a set of
overly determined canonical sections, i.e., more canonical sections (six in our case)
than the least degrees of freedom required to represent the stroke field, so that even a
simple (for example, linear) regression model as the weight function achieves sufficient
expressiveness as we will see later.
6They are partial maps as some points of𝑀 are occluded, but in what follows, we only
consider those points which have a one-to-one correspondence between𝑀 and 𝑃 .
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Figure 3: Visualization of features.

feature lines. Specifically, we first define raw features 𝜙raw𝐿,𝑉 (𝑝) =
(𝐼𝑑 (𝑝), 𝐼𝑠 (𝑝), 𝐼 ∇2

𝑑
(𝑝), �̃�𝑥 (𝑝), �̃�𝑦 (𝑝), �̃�𝑧 (𝑝), 𝜅 (𝑝), 𝐻 (𝑝), 𝑑𝑆 (𝑝)) ∈ R9,

where 𝐼𝑑 (𝑝) = 𝐼𝑑 (Π(𝑝)) (resp. 𝐼𝑠 (𝑝) = 𝐼𝑠 (Π(𝑝))) is the tonemapped
diffuse (resp. specular) intensity of the rendered image at 𝑝 , 𝐼 ∇2

𝑑
(𝑝)

:= ∥∇2𝐼𝑑 (𝑝)∥ is the magnitude of the apparent gradient7 (i.e., de-
fined in the 2D image plane) of the tone mapped diffuse intensity,
�̃�𝑥 (𝑝), �̃�𝑦 (𝑝), �̃�𝑧 (𝑝) are the apparent normal (i.e., (�̃�𝑥 (𝑝), �̃�𝑦 (𝑝),
�̃�𝑧 (𝑝)) = MMV (𝒏(𝑝)), whereMMV is the model-view matrix). 𝜅 (𝑝)
is the Gaussian curvature,𝐻 (𝑝) is the mean curvature, and 𝑑𝑆 (𝑝) is
the minimum distance to the silhouette lines. As in our supplemen-
tary material, we then encode the raw features into a relativized
and normalized internal representation 𝜙𝐿,𝑉 (𝑝), as in Fig. 3. The
key point is that the feature space serves as the proxy space shared
among different settings of (𝑀, 𝐿,𝑉 ) for generating the stroke field
valid for an animated or a new setting, allowing for a transferable
stroke representation. The internal representation improves the
transferability by aligning the range of encoded features in the
exemplar(s) and in the targets. Our encoding allows for reasonable
results even when we use a single exemplar.

We hypothesize that the smoothly varying (unnormalized) stroke
orientations in 𝑇𝑀 can be modeled by the weighted sum of the
canonical sections:

𝒖 (𝑝) =𝑊𝒖 (𝜙𝐿,𝑉 (𝑝)) · 𝐴(𝑝), (1)

where𝑊𝒖 : R𝑁𝐹 → R𝑁𝐴 is a weight function. Similarly, each of
the other smoothly varying scalar attributes 𝐵𝑠 are modeled by

𝐵𝑠 (𝑝) =𝑊𝐵𝑠
(𝜙𝐿,𝑉 (𝑝)), (2)

where𝑊𝐵𝑠
: R𝑁𝐹 → R. This way, the smoothly varying elements

in a stroke field at any point on the object are determined by com-
bining the canonical and constant fields weighted using local in-
formation around 𝑝 . We learn the weight functions𝑊∗ from user
drawn exemplars by fitting a regression model (§4).

For each of the (discrete) per-stroke elements 𝐵𝑑 , we found that
simply using a nearest neighbor query to the exemplar gives plau-
sible results:

𝐵𝑑 (𝑝) =𝑊𝐵𝑑
(Λ(𝜙𝐿,𝑉 (𝑝))), (3)

7We use ∇2 to mean the spatial derivative in the 2D image plane.
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where Λ(𝜙𝐿,𝑉 (𝑝)) returns the data point in the feature space col-
lected from the exemplar closest to the given feature 𝜙𝐿,𝑉 (𝑝) with
respect to the Euclidean metric in the encoded feature space, and
𝑊𝐵𝑑

(Λ(𝜙𝐿,𝑉 (𝑝))) returns its value.
Given a new geometry 𝑀 ′, illumination 𝐿′, and view 𝑉 ′, we

reuse the weight functions𝑊∗ fitted to the original triple (𝑀, 𝐿,𝑉 )
but with the new canonical sections𝐴′

𝑖 computed from (𝑀 ′, 𝐿′,𝑉 ′)
to generate a candidate stroke field for the new setting. In this
way, we separate elements that constitute the artistic stroke into
“style-specific” transferable elements encoded in𝑊∗ and “instance-
intrinsic” elements encoded in 𝐴′

𝑖 .
To further improve spatial and temporal coherency, we formu-

late a simple optimization problem for obtaining the final stroke
field (§5), which is in turn used to guide the generation of the
brushstrokes as integral curves of the final stroke field (§6).

4 REGRESSION
To gather an input exemplar, we prepare a rendered image of a
3D object as reference, and let the artist provide drawings, as in
StyLit [Fišer et al. 2016]. In our prototype, we consider simple
illumination conditions. We show examples of reference images in
the right inset, which are rendered us-
ing a few point light sources account-
ing for diffuse and specular reflections.
When drawing, we ask the artist to
group strokes into layers, each form-
ing a realization of a single stroke field. Ideally, each stroke in a
layer could be identified from the drawing history or via a time-
lapse video [Tan et al. 2015]. In our prototype, we built a simple
tool to identify the strokes via manual annotation: for a set of repre-
sentative strokes visible in the exemplar image, their orientations,
lengths, and widths are manually specified, where the lengths and
widths are measured in the image space. Finally, we use the radial
basis function (with the distance measured on the 2D canvas) to
interpolate the orientations, length, and width (Fig. 1).

4.1 Smoothly Varying Stroke Attributes
We construct the unnormalized stroke orientation (i.e., tangent vec-
tors) as a linear combination of deterministic canonical sections of
the tangent bundle of𝑀 . We define the following 𝑁𝐴 = 6 canonical
sections 𝑀 → 𝑇𝑀 : 1) the apparent intensity gradient 𝑰 ∇2

𝑑 ∥ :=
Π−1 (N (∇2𝐼𝑑 )), where 𝐼𝑑 is the (tone mapped) diffuse intensity cal-
culated from the lighting 𝐿, surface normal of 𝑀 , and the view
𝑉 , N(·) is the normalization operator (i.e., N(𝒙) := 𝒙/∥𝒙 ∥), and
Π−1 (·) is the push forward operator for lifting a vector in the 2D im-
age plane to the corresponding tangent vector on the surface in the
3D object space. We then include 2) the lift 𝒐𝑠 ∥ = Π−1 (N (𝒐2,𝑠 ∥))
of directions interpolated from silhouette lines 𝒐2,𝑠 ∥ via radial basis
functions. We also include 3) the apparent gradient of the tilt of
the surface normal from the image plane 𝒏 ∥ := Π−1 (N (∇2�̃�𝑧)). Fi-
nally, we include their 𝜋/2-rotations in the image plane 4) 𝑰 ∇2

𝑑⊥ :=
Π−1 (Rot𝜋/2 (N (∇2𝐼𝑑 ))), 5) 𝒐𝑠⊥ := Π−1 (Rot𝜋/2 (N (𝒐2,𝑠 ∥))), and 6)
𝒏⊥ := Π−1 (Rot𝜋/2 (N (∇2�̃�𝑧))).

For each exemplar, we know its underlying 3D geometric fea-
tures, the resulting lighting conditions, as well as the stroke at-
tributes drawn by the artist in the 2D image plane𝑄 . For the ease of

(a) (b) (c) (d) (e) (f)

Figure 4: Evaluation of our regression. We compare exem-
plar orientations (blue arrows) with reconstructed orienta-
tions (red arrows) for the (a-c) sphere and (d-f) blobby ex-
amples, using globally constant weight functions (a, d), our
weight functions accounting for local features in the first
(b, e) and second (c, f) order representations. In the bottom,
we visualize the alignment between exemplar and recon-
structed orientations, where we compare their magnitudes
in randomly sampled test directions of unit length in the
3D object space. The use of our functions allows narrower
spread from the perfect alignment corresponding to the di-
agonal line, indicating better agreement.

computation, we learn the weight functions by minimizing the fol-
lowing reconstruction error functional defined in the image plane,
measuring the differences in the projected orientations, as:

E𝒖 (𝑊𝒖 ) =
∫
Π (𝑀) ∥𝒖0 (𝑞) − Π(𝑊𝒖 (𝜙𝐿,𝑉 (Π−1 (𝑞))) · 𝐴(Π−1 (𝑞)))∥2𝑑𝑄, (4)

where Π(𝑀) is the visible region of 𝑀 in the exemplar, 𝒖0 (𝑞) is
the stroke orientation, a 2D tangent vector, at 𝑞 ∈ Π(𝑀) of the
exemplar. As for the function space of the weight functions, we
simply consider a linear expression (including a constant bias term),
and hence use linear regression. To evaluate its effectiveness, we
compare the exemplar and prediction in Fig. 4. Whereas choosing a
globally constant weight function (i.e., irrespective of the features)
(Fig. 4 (a, d) ) would fail to reconstruct the exemplar orientations, our
weight function accounting for local features (Fig. 4 (b, e)) provides
sufficient reconstruction quality, and thus, just enough degree-of-
freedom. We have also tried other models such as a higher-order
polynomial regression for the weight functions to observe better
fitting but less stability. See our supplementary material for the
details.

If necessary, smoothly varying scalar attributes can be learned
similarly by minimizing

E𝑄𝑠
(𝑤𝑄𝑠

) =
∫
Π (𝑀)

∥𝑄𝑠,0 (𝑞) −𝑊𝑄𝑠
(𝜙𝐿,𝑉 (Π−1 (𝑞)))∥2𝑑𝑄. (5)

4.2 Per-Stroke Attributes
To preserve the color variation in the synthesized results, we use 1
nearest neighbor regression of the local features 𝜙𝐿,𝑉 (𝑝), instead
of linear regression. As shown in Fig. 5, nearest neighbor regres-
sion exhibits higher and live color variation similar to the StyLit
[Fišer et al. 2016] result. Even for the back side of object, for which
the exemplar seemingly does not provide information, our regres-
sion result maintains temporal stability. Likewise, we use 1 nearest
neighbor regression for stroke lengths and widths.
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Exemplar

Reference (a) Linear regression (b) Nearest neighbor (c) StyLit
[Fišer et al. 2016]

Figure 5: Comparison of predicted color attributes. (a) Lin-
ear regression from local features 𝜙𝐿,𝑉 (𝑝) exhibits spatially
smooth results, but leads to suppression in the color varia-
tion. (b) Nearest neighbor regression from the same features
𝜙𝐿,𝑉 (𝑝) has a higher color variation, suited for a painterly
rendering, similar to the patch-based synthesis using StyLit
[Fišer et al. 2016]. In (a) and (b), we are only showing the
color attributes, not the synthesized strokes.

5 SYNTHESIZING STROKE FIELD
For per-stroke attributes, we simply use (3) per frame and do not
perform any spatial or temporal filtering.

For smoothly varying attributes, we first generate tentative at-
tributes for each frame separately, then synthesize the spatially and
temporally coherent ones via optimization. For the orientations, we
first extract canonical sections in the same way as in Section 4 per
frame. Then, we use our model (1) to predict the orientations 𝒖 (𝑡, 𝑝)
per frame at all points on the 3D surface𝑀 including both visible
and invisible ones. We process orientations at invisible points for al-
lowing (partially) invisible strokes to turn into visible smoothly and
coherently. Then, for better coherence, we solve the optimization
problem of the following objective functional with the regulariza-
tion parameters 𝜆𝑠 ≥ 0 and 𝜆𝑡 ≥ 0 to control spatial and temporal
coherence, respectively:

�̆� (𝑡, 𝑝) = argmin�̃� (𝑡,𝑝)
∫ 𝑇
0

∫
𝑀 (𝑡 )

(
∥�̃� (𝑡, 𝑝) − 𝒖 (𝑡, 𝑝)∥2 + 𝜆𝑠 ∥∇�̃� (𝑡, 𝑝)∥2 + 𝜆𝑡

 𝜕
𝜕𝑡 �̃� (𝑡, 𝑝)

2
)
𝑑𝑀𝑑𝑡, (6)

where ∇ : Γ(𝑇𝑀) → Γ(𝑇 ∗𝑀 ⊗ 𝑇𝑀) is the Levi-Civita connection,
and all the norms are induced by the metric of𝑀 .

The first term in (6) penalizes the deviation from the predicted
orientations 𝒖 (𝑡, 𝑝), while the second and third terms penalize spa-
tial and temporal variations, respectively. The effect of varying the
influence of the second and third terms is discussed in Fig. 6. The
process for smoothly varying scalar attributes follows similarly. In
our implementation,𝑀 is represented by a triangulated manifold
mesh, and a vector field is assumed to be piecewise linear. We dis-
cretize the above functional via discrete exterior calculus [Crane
et al. 2013; Desbrun et al. 2006; Fisher et al. 2007; Hirani 2003].
Through the integration of the inner product of the field and each
oriented edge 𝑒 of the mesh along 𝑒 , we convert the vector field
𝒖 (𝑡, 𝑝) to the discrete 1-form 𝒄𝑘 ∈ 𝐶1 (𝑀) according to Fisher et
al. [2007], where 𝑘 ≥ 1 is the frame index. Here, a discrete 1-form
𝒄𝑘 is represented as a vector whose components are indexed by the
oriented edges E. Then, the optimization reduces to

{�̆�𝑘 } = argmin{�̃�𝑘 }
∑
𝑘

(
★1

�̃�𝑘 − 𝒄𝑘
2

+ 𝜆𝑠 (�̃�𝑘 )⊤𝑳1 �̃�𝑘 + 𝜆𝑡
★1
Δ𝑡

�̃�𝑘 − �̃�𝑘−1
2
)
, (7)

(a) (b) (c) (d)

Figure 6: Comparison of the optimization settings for spatial
and temporal filtering. (a) Input random orientation field.
(b) Spatially smoothed orientation field with 𝜆𝑠 = 0.07, 𝜆𝑡 =

10−10. (c) Temporally smoothed orientation field with 𝜆𝑠 =

10−10, 𝜆𝑡 = 0.5. (d) Our setting for making results with 𝜆𝑠 =

0.07, 𝜆𝑡 = 0.5.

where Δ𝑡 is the time interval between frames 𝑘 − 1 and 𝑘 , ★1 is the
discrete Hodge star, and 𝑳1 is the discrete covariant Laplacian. We
further approximate the optimization by solving it sequentially: we
first perform spatial filtering, followed by temporal filtering using
the spatially filtered 1-forms as the input. The resulting optimization
problem is a linear system. We applied frame-by-frame smoothing
because this was implementation-wise simpler and much better in
terms of memory use, and did not show noticeable artifacts. Finally,
the orientation field is reconstructed from the 1-form �̆�𝑘 using
the Whitney elements [Whitney 1957], as discussed in Fisher et
al. [2007, §2.4]. While we learn a style-specific model in regression,
the smoothing is an instance-intrinsic operation, hence performed
separately. Smoothly varying scalar attributes follow similarly.

6 SYNTHESIZING STROKES
We synthesize each stroke as an integral curve of the stroke field.
Specifically, we need to decide an anchor point 𝑞 ∈ 𝑀 (start point),
initial orientation (tangent vector) 𝒖 (𝑞) ∈ 𝑇𝑞𝑀 , length 𝑙 , width𝑤 ,
and color 𝑪 of the curve. We use a user-specified texture to draw
each stroke. Inspired by “Loving Vincent” [Kobiela and Welch-
man 2017; Mackiewicz and Melendez 2016], where only necessary
strokes are overdrawn atop the strokes from the previous frame, we
generate coherent animation as follows.

First, we predetermine a hierarchy of anchor points. The hier-
archy is for handling possible changes in the zoom level during
the animation. Starting from the first frame, we use Poisson disk
sampling [Bowers et al. 2010] with an initial radius 𝑟0 (5% of the di-
agonal length of the bounding box of the object) to generate points
on the object surface, forming the anchor points belonging to the
0-th level. To generate anchor points in the 𝑖-th level, we perform
Poisson disk sampling incrementally, atop all anchor points in the
0, . . . , (𝑖 − 1)-th levels, using a reduced radius (i.e., 𝑟𝑖 = 0.5𝑟𝑖−1)
applied to already generated points as well. In our current imple-
mentation, we use 4 levels in total. Then, we propagate the anchor
points in all levels to the next frame. Note that gaps may appear in
the second frame due to the deformation of the object. Thus, we
generate additional anchor points to fill in such gaps starting from
the coarsest level (i.e., 0-th level). All anchor points in the second
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frame are then propagated to the next frame. We repeat this process
for the rest of the frames.

Next, we synthesize the strokes starting from the first frame. We
begin by setting the entire visible surface region of the first frame as
‘active.’ Starting from the coarsest level, we accept predetermined
anchor points if they are within the active region. Each time we
accept an anchor point 𝑞, we generate a stroke starting from the
anchor point. We determine its length 𝑙𝑞 and width𝑤𝑞 , both mea-
sured in the screen space, and color 𝑪𝑞 , by querying the values
predicted from our model8. To trace along the tangent vector field,
we first choose a random angular offset 𝜉𝑞 according to a uniform
distribution 𝑈 (−𝜎𝒖 , 𝜎𝒖 ), and solve the following differential equa-
tion with the initial condition 𝑝 (0) = Π−1 (𝑞) until the stroke length
measured in the screen space becomes 𝑙𝑞 :

𝑑

𝑑𝑡
𝑝 (𝑡) = Rot(𝜉𝑞, 𝑝 (𝑡), 𝒖 (𝑝 (𝑡))), (8)

where Rot(𝜉𝑞, 𝑝 (𝑡), 𝒖 (𝑝 (𝑡))) means a rotation of 𝒖 (𝑝 (𝑡)) in the tan-
gent space at 𝑝 (𝑡) in angle 𝜉𝑞 . Random angular offsets within
𝜎𝒖 = 5◦ allow the emulation of natural variation seen in hand-
drawn styles of artists (as in our supplementary video).

We ‘deactivate’ the region that would be painted by the generated
stroke9. If all the anchor points in the current level are used but
there are still active regions, we proceed to the next level. To draw
the strokes, we first render a base layer serving as ‘undercoat,’ where
the color of each point is queried using our model. This undercoat
is an extension of Lit-Sphere [Sloan et al. 2001] and works to cover
remaining gaps even when we have used up all anchor points10
(see Fig. 7). Atop of this base layer, the chosen strokes are drawn in
an order sorted across all the 4 levels according to their luminance,
darker one first, which gives nicely looking painterly expression as
shown in §7 and the supplementary video.

When proceeding on to the next frame, we propagate the strokes
from the previous frame. For each anchor point in the current frame,
we check whether there is a corresponding point in the previous
frame fromwhich a stroke is drawn. It yes, we propagate the random
number used to alter its orientation for a coherent alternation. We
generate the stroke using the tangent vector, length, width, and
color, queried from the stroke field at the current frame together
with the propagated random number. If the resulting drawing of
the current frame has gaps, we mark those regions as ‘active’ and
follow the process used for the first frame to accept additional
anchor points. For the order of drawing, we first draw all of the
propagated strokes. Atop of them, we draw the newly generated
strokes sorted across all the 4 levels in the order of their luminance.

7 RESULTS
7.1 On the Stroke Fields and Generated Strokes
In our supplementary video, we show the influence of canonical sec-
tions on the resulting orientations. With only the view-dependent

8We also leave knobs for the user to adjust the lengths and widths, by allowing the
user to multiply globally constant scalars for scaling. If necessary, the user could also
apply color adjustments as a post-processing step.
9When computing the region for deactivation, we reduce lengths and widths by a
factor of 0.5 to accept more anchor points for a denser stroke coverage, similar to the
use of the reduced radius in avoid-a-void [Yue et al. 2015].
10Deeper hierarchy would result in an overly long computation time.

(a) Undercoat (b) Strokes only (c) Composition

Figure 7: Stroke rendering over the undercoat. (a) Our pre-
dicted color attributes as the undercoat. (b) Integral curves
only. (c) The composition of (b) atop (a) as the output.

(a)
StyLit

(b)
O

urs
Frame 80Frame 40 Frame 45 Frame 50 Frame 70 Frame 75

Figure 8: Comparisonwith patch-based stylization. (a) StyLit
[Fišer et al. 2016]. (b) Our approach.

canonical sections 𝒐𝑠 ∥ and 𝒐𝑠⊥, the resulting orientations are stable
but too boring. On the other hand, with the other canonical sections
𝑰 ∇2

𝑑 ∥ , 𝑰 ∇2
𝑑⊥, 𝒏 ∥ , and 𝒏⊥, the resulting orientations can become

unstable when lighting conditions or normals vary significantly.
The use of the combination of these canonical sections leads to a
stable yet lively motion in the orientations.

We also compare the effectiveness of the use of the anchor points
and sorting in terms of temporal coherence in our supplementary
video. The use of the coherent anchor points and sorting greatly re-
duce temporal flickering due to the shift in stroke positions and the
change in drawing orders when there is no inter-frame coherence.

7.2 Comparison to Patch-based Approach
Unlike photorealistic inputs, our inputs are simple renderings with
much fewer visual details, making it hard to apply recent neural
network based approaches using VGG features, as discussed by
Fišer et al. [2016] and Hauptfleisch et al. [2020]. Here, we compare
our method to the state-of-the-art guided stylization framework of
StyLit [Fišer et al. 2016]. To run their algorithm, we provide illumi-
nation effects (diffuse and specular images in RGB colors, computed
using the same lighting and shading models as ours) as the guiding
channels. StyLit tends to produce patch orientation drift, causing
temporal artifacts on stroke motion. Even with the optimization
for patch-consistency, maintaining coherent orientation motions is
hard in the image space. Our method offers much better temporal
stability, while still retaining the expressive stroke styles, as in Fig. 8
and our supplementary video.

7.3 Applications
First, we show our application to animations in the viewpoint in
Fig. 9 (top), as well as simultaneous lighting and view animation
in Fig. 9 (middle). With the change in the view, part of the object
previously unseen will be drawn anew. Even though this occurs



SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada H. Todo, K. Kobayashi, J. Katsuragi, H. Shimotahira, S. Kaji, and Y. Yue

Frame 10 Frame 40 Frame 70 Frame 100 Frame 130

Frame 20 Frame 60 Frame 80 Frame 100Frame 40

Frame 10 Frame 30 Frame 50 Frame 70 Frame 90

Figure 9: Top: view animation. Middle: combined view and
lighting animation. Bottom: stroke animation for a deform-
ing object.

(a) (b) (c)

Figure 10: Partial exemplar for a complex scene. (a) We only
use the exemplar and annotation given in the focused area.
(b) Generated orientation field on the complexmodel. (c) Ex-
pressive strokes are synthesized over the entire region.

every frame, we have a stable animation (please see our supplemen-
tary video). This is because we first generate tentative stroke field
even for the unseen region and then perform smoothing for the
entire region. Even when the viewpoint moves to the back side of
the object, for which seemingly information only in the front side
has been provided through the exemplar, our generated animation
is still plausible. Note the natural motion of the highlights as the
viewpoint changes, as well as the expressive stroke styles for each
frame.

Encouraged by the fact that our learned model can plausibly
generate stroke field for the unseen area, we test another ambitious
setting where the artist provides drawing only for a small fraction
of the object (the focused area in Fig. 10 (a)). The decomposed style-
specific elements and instance-intrinsic elements allow us to nicely
propagate the stroke orientations, length, width, and colors.

Next, we show our application to a deforming object in Fig. 9
(bottom). The object starts in a spherical shape and gets stretched
over time, resulting in the total surface area to vary as well. We
can apply our method even to a complex, deforming character

Superimposed

Synthesized

Exemplars

strokes for
each layer

Figure 11: Superimposition of two styles.

animation shown in Fig. 1 with coherent and expressive stroke
styles.

In Fig. 11, we transfer the stroke styles drawn for the genus-0
blobby object to the bottom layer of the genus-4 fertility statue.
The transfer works for objects with different topology. We also
superimpose another layer of strokes generated using a different
style. For the upper layer, we have another transparency exemplar
(applied via 1 nearest neighbor regression, like colors) for specifying
which part of the style to apply. Because we are generating and
registering strokes on the manifold, the animation is smooth even
when the holes appear or disappear in the image space.

8 CONCLUSIONS AND FUTUREWORK
We have presented a method for example-based synthesis of ani-
matable stroke styles. From the exemplars drawn by the artist, our
method learns a model that takes a set of features in the proxy
space as input and returns scalar attributes or weights for com-
bining canonical sections for generating the orientations. The use
of the proxy space decouples the dependency on style-specific el-
ements from the instance-intrinsic elements, and the use of the
overly determined bases enables the use of a very simple (in fact
linear) regression. The generated stroke animations are more tem-
porally stable and contain less artifacts compared to the patch-based
approaches, while retaining the vivid and expressive stroke styles.

There are several fascinating future work (the details are in our
supplementary material): 1) an automatic approach that can tell if
an enough variation of samples are collected during the annotation
process, 2) learning the correlation (with a generalized randomness)
among neighboring strokes for the colors, lengths, widths, and ori-
entations, 3) offering interactive artistic control, 4) incorporating
transparent media with the consideration of removing already gen-
erated strokes as well as of their mixing, 5) handling atmospheric
participating media, and 6) bridging more advanced geometry pro-
cessing tools, such the N-RoSy field or topological optimization,
for better control of the singular points or for incorporating more
sophisticated view-dependent canonical sections based on, e.g., the
suggestive contours [DeCarlo et al. 2003].
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