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1 DETAILED STEPS
1.1 Shading Model for Reference Renderings
Our reference rendering computes the (pre-tone-mapping) colors
𝑰 (represented in the regular R, G, and B channels) lit by a few
point light sources, each with an intensity 𝑳 𝑗 , using a modified
(normalized) Blinn-Phong model [Gotanda 2010]. For simplicity,
we have omitted the Fresnel term from the BRDF, and disabled the
fall off due to the inverse-square law (to avoid regions getting dark
too quickly). The 𝑗-th light source gives rise to the 𝑗-th diffuse color
𝑰 𝑗,𝑑 as

𝑰 𝑗,𝑑 := 𝑳 𝑗 ⊙
𝝆𝑑
𝜋

cos𝜃𝑙 𝑗 , (1)

as well as the specular color 𝑰 𝑗,𝑠 as

𝑰 𝑗,𝑠 := 𝑳 𝑗 ⊙
𝝆𝑠 (𝑛 + 2)

4𝜋 (2 − 2−𝑛/2)
cos𝑛 𝜃ℎ 𝑗

cos𝜃𝑙 𝑗
max(cos𝜃𝑙 𝑗 , cos𝜃𝑒 )

, (2)

where ⊙ is the component-wise multiplication, and 𝝆𝑑 and 𝝆𝑠 re-
spectively represent the diffuse and specular reflection coefficients.
A non-negative real number 𝑛 describes the magnitude of the glossi-
ness (the larger 𝑛, the closer to the perfect mirror), and 𝜃𝑙 𝑗 (resp.
𝜃ℎ 𝑗

, and 𝜃𝑒 ) is the angle between the surface normal and the 𝑗-th
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lighting direction (resp. the 𝑗-th half vector, and the viewing direc-
tion). Obtuse angles are clumped to the right angle. Of course, the
user can use their own customized lighting/shading model instead.

We define the total diffuse color 𝑰𝑑 , the total specular color 𝑰𝑠 ,
and the total color 𝑰 as the following sums:

𝑰𝑑 :=
∑
𝑗

𝑰 𝑗,𝑑 , (3)

𝑰𝑠 :=
∑
𝑗

𝑰 𝑗,𝑠 , (4)

and

𝑰 := 𝑰𝑑 + 𝑰𝑠 . (5)

The resulting colors 𝑰𝑑 , 𝑰𝑠 , and 𝑰 are stored in a high dynamic range
format to avoid excess quantization or saturation (so that we can
take the derivatives later on).

1.2 Tone Mapping
The raw intensity value 𝑰∗ (referring to 𝑰𝑑 , 𝑰𝑠 , or 𝑰 ) may have an
extremely large value, due to the existence of strong highlighting,
a particular choice of the shading model, or the use of a light probe
image as the light source (instead of the point one). Hence, a tone
mapping should usually be used to produce a low dynamic range
of intensities for display.

For the transfer of the stroke styles, we ask 1) the tone mapped
values to be bounded, because otherwise we would need to (unreal-
istically and impractically) acquire style data covering a range of
intensity too wide. We also ask 2) the tone mapping to be designed
such that we can consistently assign styles across scenes. This con-
sistency might be interpreted differently depending on the actual
use of our stroke transfer. The user may want to tie the styles with
a) the tone mapped intensities relative to the maximum intensity, or
b) the absolute tone mapped values. Both cases refer to the displayed
colors, but the canonical white value is scene-dependent (or even
frame-dependent) in the former one. For the former case, the user
can use an existing tone mapping operator, like the one by Reinhard
et al. [2002]. For the latter case, we design a simple, customized
tone mapping such that it 1) produces a bounded intensity and
2) preserves the intensity values in the usual low dynamic range
(between 0 and 1) as much as possible.

We first convert the raw intensity 𝑰∗ into the CIE 1976 𝐿∗𝑎∗𝑏∗
(or simply CIELAB) color space. Let 𝐿∗ be its luminance, and 𝑎∗
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and 𝑏∗ be the color channels. Then, our tone map 𝑇 converts 𝐿∗ to
𝐿∗′ = 𝑇 (𝐿∗). The color channels 𝑎∗ and 𝑏∗ are left unchanged. We
obtain the final color by converting 𝐿∗′, 𝑎∗, and 𝑏∗ back into the
RGB color space.

We design the tone mapping𝑇 in the form of a sigmoid function.
Specifically, we use the following transformed logistic function

𝑇 (𝑥 ;𝐿𝑀 ,Θ𝑇 ) := 𝐿𝑀

(
2

exp(Θ𝑇 𝑥)
exp(Θ𝑇 𝑥) + 1

− 1
)

(6)

with two parameters 𝐿𝑀 , which adjusts the range of values to
(−𝐿𝑀 , 𝐿𝑀 ), and Θ𝑇 , which controls the speed approaching the lim-
iting values 𝐿𝑀 or −𝐿𝑀 . Note that 𝑇 (𝑥 ;𝐿𝑀 ,Θ𝑇 ) is anti-symmetric
(i.e., 𝑇 (−𝑥 ;𝐿𝑀 ,Θ𝑇 ) = −𝑇 (𝑥 ;𝐿𝑀 ,Θ𝑇 )), so in particular, it maps
𝐿∗ = 0 to 𝐿∗′ = 0. Moreover, its second-order derivative is negative
for 𝑥 ∈ (0,∞), meaning the speed of increase of 𝐿∗′ slows down
monotonically.

The parameters 𝐿𝑀 and Θ𝑇 are chosen to maximize the com-
pression ratio while keeping a low deviation of the converted value
𝑇 (𝑥 ;𝐿𝑀 ,Θ𝑇 ) from the raw value 𝑥 in the low dynamic range [0, 1].
More precisely, we solve the following optimization problem:

(𝐿𝑀 ,Θ𝑇 ) = argmin
�̃�𝑀 ,Θ̃𝑇

�̃�𝑀 s.t. max
𝑥 ∈[0,1]

∥𝑥 −𝑇 (𝑥 ; �̃�𝑀 , Θ̃𝑇 )∥ ≤ 0.05.

(7)

Numerical search finds (𝐿𝑀 ,Θ𝑇 ) = (1.39, 1.67).

1.3 Exemplar and Annotations
The final color converted from 𝐿∗′ = 𝑇 (𝐿∗;𝐿𝑀 ,Θ𝑇 ), 𝑎∗, and 𝑏∗

are given to the artist to provide an exemplar (by overdrawing the
strokes atop the reference rendering). Although regions with an ex-
ceeding luminance will saturate when displayed on a low dynamic
range display, such regions only appear at a specular highlight, and
a human is pretty good at extrapolating the luminance at such a
region.

For each exemplar, we let an annotator (can be the artist them-
selves) to give annotations for the orientations, lengths, and widths
of the strokes for (usually) a small subset of the strokes. To simplify
the interactions for the annotations, we let the annotator to ap-
proximate each annotated stroke with a sequence of connected line
segments. The annotator is also asked to give the width (a single
scalar per stroke, measured in the screen space) for each stroke.

Note that because our targets are thick painting media, many
strokes are only partially visible (the occluded or overdrawn regions
are completely invisible). Assigning the length and/or width of a
stroke only accounting for its visible region may not correctly obey
the artist’s intention; if possible, the length and width for its entire
region should be provided instead.

1.4 Preparation for Regression
Prior to regression using the exemplar and annotations, we prepare
the necessary data. These include the 1) stroke data, 2) features, and
3) canonical sections. Again, because we focus on thick painting
media, we only care about visible styles: an extreme case would
be that there are completely different styles underneath the visible
parts; our model for thick media should not be influenced by such
invisible data. A simple way to incorporate this is to process the
exemplar per visible pixel (i.e., if a stroke spans over multiple visible

pixels, we will have a piece of data for every such pixel; this will
also naturally weigh a stroke more if its visible region is larger),
leading to our error functional (4) in the main paper or its discrete
forms (18), (22), or (24) discussed later.

1.5 Stroke Data
For each annotated stroke, we first fit a spline curve to its annotated
sequence of line segments. Its arc length in the screen space is given
as the stroke’s length. While the colors are already available per
pixel, we need to interpolate the orientations, lengths, and widths
from the sparsely given annotations.

We first sample seed points on each fitted spline curve. At each
seed point, we assign the annotated width and the arc length (both
measured in the screen space) as the width and length data. For
the orientations, we first compute the tangent vectors in the screen
space 𝒕sc𝑞𝑘 along the spline curves at the seed points 𝑞𝑘 . These
tangent vectors 𝒕sc𝑞𝑘 are then pushed forward to the object space

vectors 𝒕obj𝑞𝑘
lying in the tangent space of the object surface (i.e.,

𝒕
obj
𝑞𝑘

= Π−1 (𝒕sc𝑞𝑘 )
1). This push forward operator is well-defined and

one-to-one. Please see Section 1.7 for how to compute 𝒕obj𝑞𝑘
.

We choose to define the orientation in the object space to respect
the underlying 3D geometry, while the width and length in the
screen space to respect the dimension of the brush and the motion
of the hand relative to the screen (but these can also be configured
in the object space depending on the taste of interest).

From the quantities 𝐵𝑘 (these are any of the orientations, widths,
and lengths) defined on the seed points 𝑞𝑘 , we use radial basis
functions to interpolate the values 𝐵(𝑞) at any location 𝑞 on the
screen (in a specified subregion for the case of partial exemplar, or
the entire region excluding the background otherwise) as:

𝐵(𝑞) =
∑
𝑘

𝐵𝑘Ψ(∥𝑞 − 𝑞𝑘 ∥;ΘΨ), (8)

where ∥𝑞 − 𝑞𝑘 ∥ is the distance in the screen space. We choose the
bases Ψ(∥𝑞 − 𝑞𝑘 ∥;ΘΨ) to be multiquadric given by

Ψ(𝑥 ;ΘΨ) =
√

1 + 𝑥2

Θ2
Ψ

, (9)

where the parameterΘΨ is the average of the screen space distances
of all pairs of seed points (the default setting of SciPy). For the
orientations, we normalize them again after interpolation. In our
prototype implementation, we employ the interpolation to find the
quantities at pixel centers.

We verify the validity of the interpolated orientations, lengths,
and widths (most often only visually) to make sure that the annota-
tions are sufficient and representative. The validity could be violated
if the annotations are too sparse. For such a case, the annotator is
asked to add more annotations.

1We are using the operator Π−1 (and also Π) to refer two related things. The first is the
point correspondence: when we write 𝑝 = Π−1 (𝑞) , this means the inverse projection
of the point 𝑞 on the screen to the point 𝑝 ∈ 𝑀 . The second is the correspondence
between tangent vectors: when we write 𝒕obj𝑞𝑘

= Π−1 (𝒕 sc𝑞𝑘 ) , this means the push
forward of the tangent vector. The second is naturally induced from the first. It should
be clear from the context which one we are referring to.
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1.6 Extracting Features
As the features at a pixel 𝑞, we extract

• diffuse intensity 𝐼𝑑 (𝑞) := 𝑇 (𝐿∗ (𝑰𝑑 (𝑞)), where 𝐿∗ (𝑰𝑑 (𝑞)) is
the luminance of 𝑰𝑑 (𝑞) computed from (3),

• specular intensity 𝐼𝑠 (𝑞) := 𝑇 (𝐿∗ (𝑰𝑠 (𝑞))), likewise from (4),
• apparent (diffuse) intensity gradient 𝐼 ∇2

𝑑
(𝑞) := ∥∇2𝐼𝑑 (𝑞)∥

(we are excluding the gradient of specular because a highlight
is usually localized in a small region and its gradient is not
so informative), computed by taking finite differences,

• distance from silhouettes𝑑𝑆 (𝑞), computed using opencv [OpenCV
2015],

• Gaussian curvature 𝜅 (Π−1 (𝑞)), computed using libigl [Ja-
cobson et al. 2018]

• mean curvature 𝐻 (Π−1 (𝑞)), again computed using libigl [Ja-
cobson et al. 2018], and

• apparent normal (�̃�𝑥 (𝑞), �̃�𝑦 (𝑞), �̃�𝑧 (𝑞)) := Mmv (𝒏(Π−1 (𝑞))),
whereMmv is themodel-viewmatrix; �̃�𝑧 (𝑞) = 1 if the surface
at Π−1 (𝑞) is facing toward the viewer and �̃�𝑧 (𝑞) = 0 if it is
facing sideways.

1.6.1 Encoding Features. For a raw feature value 𝑓 (a scalar), we en-
code it into an internal representation 𝑓 (again, a scalar), accounting
for the following properties.

• Ideally, a real world data 𝑓 and its internal representation 𝑓

should be tied with an adequate one-to-one correspondence,
meaning that those should be regarded as different (resp. the
same) in the example styles should also be regarded as dif-
ferent (resp. the same) in the internal representation2. This
suggests a design of an appropriate relativization operator
discussed later and that there should usually be only one sin-
gle relativization operator commonly applied to all data such
that transfer (between different objects) makes the intended
sense.

• Practically, it is important that the range of features in the
exemplar covers (at least a large fraction of) the range of fea-
tures in the target. It is absolutely fine that the former range
is larger than the latter, but if the latter is much larger than
the former, there can be a considerable number of queries re-
quiring extrapolation; an output with too much extrapolation
may not work in the intended way and should be avoided.

• We need a bit care in treating the Gaussian and mean cur-
vatures. First, it is the pair of these curvatures describing
the local shape (i.e., their ratio is a useful information); they
should follow the same encoding procedure and should not
be treated separately. Second, we need to be aware of dif-
ferences in units. Because the curvature along a curve has
a unit of inverse of length (e.g.,𝑚−1), Gaussian curvature
has a unit like𝑚−2, whereas mean curvature𝑚−1; a change
of unit e.g., from meters to centimeters would change the
ratios between these quantities.

• To account for the balance between different features, we
might want to design an adequate normalization.

Our current encoding makes use of the following relativization
and normalization stages. The actual design should adapt to each
particular use case, and our design should be treated as an example
2What this means exactly depends on the actual use case.

of such a recipe to help the user designing their own customized
encoding procedure.

1.6.2 Relativization. We relativize the raw feature values as fol-
lows.

• For the distance from silhouettes 𝑑𝑆 , we linearly scale it
so that the minimum and maximum values become 0 and 1,
respectively. This is done per frame and is for relatively treat-
ing the closeness from the boundary and to the innermost
region.

• For the Gaussian 𝜅 and mean 𝐻 curvatures, we intend to
treat them in a relative sense (like 𝑑𝑆 ), with the relativeness
meaning that the style in a region with a curvature higher
than others in a frame is tied with the style in such a re-
gion in another frame, and we do not care about comparing
their absolute values between frames. We also assume that
the artist will not use unperceivable hidden curvature infor-
mation to determine the style on the visible region. These
considerations lead to our following design for the relativiza-
tion of the curvatures. For each frame, we first perform a
(relative) non-dimensionalization. We choose the represen-
tative length 𝑙obj to be the average of the side lengths of
the bounding box of the object, and multiply (𝑙obj)2 (resp.
𝑙obj) to 𝜅 (resp. 𝐻 ), i.e., the non-dimensionalized quantity
becomes 𝜅nd = 𝜅 (𝑙obj)2 (resp. 𝐻nd = 𝐻𝑙obj). Then, we re-
move outlier values (due to numerical inaccuracies for the
computation of the discrete curvatures). Outlier removal
is done for 𝜅 and 𝐻 separately by first enumerating the
curvature values in the visible region and detecting the
upper and lower 1% quantiles. Then, we obtain the mini-
mum and maximum of the rest (middle) 98% quantile. Any
value outside of this middle quantile is clamped to the min-
imum or maximum value. Let the clamped values be 𝜅nd, c
and 𝐻nd, c. Next, for points 𝑞 in the visible region Π(𝑀),
we compute their maximum absolute curvature 𝐶max as
𝐶max = max𝑞∈Π (𝑀) max( |𝜅nd, c (𝑞) |, |𝐻nd, c (𝑞) |). Note that
the comparison between the Gaussian and mean curvatures
only makes sense when they are non-dimensionalized. Then,
we set the relativized Gaussian𝜅rel andmean𝐻 rel curvatures
to 𝜅rel = 𝜅nd, c

𝐶max and 𝐻 rel = 𝐻nd, c

𝐶max . With this relativization,
𝜅rel, 𝐻 rel ∈ [−1, 1].

• For the apparent diffuse intensity gradient 𝐼 ∇2
𝑑

, we again
only care about their relative magnitudes for comparison be-
tween frames. For each frame, we compute its mean 𝜇

𝐼
∇2
𝑑

and
standard deviation 𝜎

𝐼
∇2
𝑑

within the visible region, then we

clamp outliers with values larger than 𝜇
𝐼
∇2
𝑑

+ 2𝜎
𝐼
∇2
𝑑

(because

𝐼
∇2
𝑑

≥ 0 by construction, we do not clamp the lower side).
Then, we linearly scale and shift the range [0, 𝜇

𝐼
∇2
𝑑

+ 2𝜎
𝐼
∇2
𝑑

]
to [−1, 1].

• We leave the diffuse 𝐼𝑑 and specular 𝐼𝑠 intensities, as well as
the normal features �̃�𝑥 , �̃�𝑦 , and �̃�𝑧 unchanged.

1.6.3 Normalization. After relativization, 𝐼𝑑 and 𝐼𝑠 arewithin [0, 𝐿𝑀 ];
𝐼
∇2
𝑑

, 𝜅, 𝐻 , �̃�𝑥 , and �̃�𝑦 are within [−1, 1]; and 𝑑𝑆 and �̃�𝑧 are within
[0, 1]. We rescale and shift them such that all of them are within
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[−1, 1] (i.e., [0, 𝐿𝑀 ] for 𝐼𝑑 and 𝐼𝑠 becomes [−1, 1], and [0, 1] for 𝑑𝑆
and �̃�𝑧 becomes [−1, 1]).

1.7 Computing Canonical Sections
The 6 canonical sections involved in our method are

• apparent intensity gradient 𝑰 ∇2
𝑑 ∥ = Π−1 (N (∇2𝐼𝑑 )), where

𝐼𝑑 = 𝑇 (𝐿∗ (𝑰𝑑 (𝑞))), andN(𝒙) := 𝒙/∥𝒙 ∥ is the normalization
operator,

• its 90◦ rotation 𝑰 ∇2
𝑑⊥ = Π−1 (Rot𝜋/2 (N (∇2𝐼𝑑 ))), where the

rotation is performed in the image space (also applies for
other rotated canonical sections),

• silhouette guided direction 𝒐𝑠 ∥ = Π−1 (N (𝒐2,𝑠 ∥)),
• its 90◦ rotation 𝒐𝑠⊥ = Π−1 (Rot𝜋/2 (N (𝒐2,𝑠 ∥))),
• apparent gradient of the normal tilt 𝒏 ∥ = Π−1 (N (∇2�̃�𝑧)),
and

• its 90◦ rotation 𝒏⊥ = Π−1 (Rot𝜋/2 (N (∇2�̃�𝑧))).
On a silhouette line, 𝒐2,𝑠 ∥ (𝑝) aligns with the line. The choice of
its orientation does not matter as long as it is coherent between
frames; the negation of the sign is simply reflected in the negation
of the corresponding weight function. We have defined all of these
canonical sections 𝐴𝑖 from 2D orientations (i.e., all of 𝐴𝑖 have the
form𝐴𝑖 = Π−1 (𝐴sc

𝑖
), where𝐴sc

𝑖
is a direction in the 2D screen space,

and recall that the rotations are performed in the image space); this
is due to our assumption that the orientations are determined on the
basis of the perceived 2D information. The push forward operator
Π−1 is applied to these 2D orientations to lift them to the 3D object
space for latter convenience of vector field smoothing.

A tangent vector 𝒕obj𝑝 at 𝑝 ∈ 𝑀 in the object space pushed
forward from 𝒕sc𝑞 ∈ R2 at 𝑞 in the screen space lies in the tangent

space 𝑇𝑝𝑀 of the object surface (i.e., 𝒕obj𝑝 ∈ 𝑇𝑝𝑀), hence can be
parameterized by the two scalar coefficients 𝛼𝑝 and 𝛽𝑝 used for
linearly combining the two basis vectors 𝒆 (1)𝑝 and 𝒆 (2)𝑝 of the tangent
space:

𝒕
obj
𝑝 = 𝛼𝑝𝒆

(1)
𝑝 + 𝛽𝑝𝒆

(2)
𝑝 . (10)

The projection operator Π at 𝑝 linearly relates the two tangent
spaces 𝑇𝑝𝑀 and R2, hence can be represented using a matrix Π𝑝 ,
and we have the relation between 𝒕

obj
𝑝 and 𝒕sc𝑞 via

𝒕sc𝑞 = Π𝑝 𝒕
obj
𝑝 . (11)

Substituting (10), we have

𝒕sc𝑞 = Π𝑝 (𝛼𝑝𝒆 (1)𝑝 + 𝛽𝑝𝒆
(2)
𝑝 ) =

(
Π𝑝𝒆

(1)
𝑝 Π𝑝𝒆

(2)
𝑝

) (
𝛼𝑝
𝛽𝑝

)
. (12)

Letting P𝑝 :=
(
Π𝑝𝒆

(1)
𝑝 Π𝑝𝒆

(2)
𝑝

)
, we have P𝑝 ∈ R2×2, and(

𝛼𝑝
𝛽𝑝

)
= P−1

𝑝 𝒕sc𝑞 (13)

is well-defined for visible points 𝑝 . Hence, we arrive at

𝒕
obj
𝑝 = (𝒆 (1)𝑝 𝒆 (2)𝑝 )

(
𝛼𝑝
𝛽𝑝

)
= (𝒆 (1)𝑝 𝒆 (2)𝑝 )P−1

𝑝 𝒕sc𝑞 , (14)

meaning that the matrix representation Π−1
𝑞 for the push forward

operator Π−1 at 𝑞 is given by

Π−1
𝑞 = (𝒆 (1)𝑝 𝒆 (2)𝑝 )P−1

𝑝 . (15)

1.8 Regression for Orientations
From (15), we can verify that Π ◦ Π−1 = 𝑖𝑑 , where 𝑖𝑑 is the identity
operator, via

Π𝑞Π−1
𝑞 = Π𝑞 (𝒆 (1)𝑝 𝒆 (2)𝑝 )P−1

𝑝 = P𝑝P−1
𝑝 = I. (16)

We represent each canonical section 𝐴𝑖 (𝑝) as a column vector
�̂�𝑖,𝑝 ∈ R3 and 𝐴(𝑝) as a matrix Â𝑝 ∈ R3×𝑁𝐴 . The output of the
weight model𝑊𝒖 (𝜙𝐿,𝑉 (𝑝)) can then be represented as a column
vector𝑾𝒖,𝑝 ∈ R𝑁𝐴 , and𝑊𝒖 (𝜙𝐿,𝑉 (𝑝)) · 𝐴(𝑝) becomes Â𝑝𝑾𝒖,𝑝 .

Because in our construction, all of the canonical sections 𝐴𝑖 (𝑝)
have the form 𝐴𝑖 (𝑝) = Π−1 (𝐴𝑠𝑐

𝑖
(𝑞)), Â𝑝 can be expressed as Â𝑝 =

Π−1
𝑞 Â𝑠𝑐

𝑞 , where Â𝑠𝑐
𝑞 ∈ R2×𝑁𝐴 consists of 𝑁𝐴 column vectors �̂�𝑠𝑐

𝑖,𝑞

representing 𝐴𝑠𝑐
𝑖
(𝑞). Hence, Π(𝑊𝒖 (𝜙𝐿,𝑉 (Π−1 (𝑞))) ·𝐴(Π−1 (𝑞))) in

the error functional (4) in ourmain paper becomesΠ(Π−1
𝑞 Â𝑠𝑐

𝑞 )𝑾𝒖,Π−1 (𝑞) ,
which simplifies to Â𝑠𝑐

𝑞 𝑾𝒖,Π−1 (𝑞) . With this, our error functional
becomes

E𝒖 (𝑾𝒖 ) =
∫
Π (𝑀)

𝒖0 (𝑞) − Â𝑠𝑐
𝑞 𝑾𝒖,Π−1 (𝑞)

2
𝑑𝑄. (17)

We discretize the integral as a summation over pixels for the visible
regions of the surfaces as

E𝒖 (𝑾𝒖 ) ≈ Edis
𝒖 (𝑾𝒖 ) =

∑
𝑞∈Πdis (𝑀)

𝒖0 (𝑞) − Â𝑠𝑐
𝑞 𝑾𝒖,Π−1 (𝑞)

2
Δ𝑄,

(18)

where Πdis (𝑀) ⊂ Π(𝑀) is the discrete set of points corresponding
to the pixel centers, and Δ𝑄 is the area of a pixel (a constant).

If𝑊𝒖 (𝜙𝐿,𝑉 (𝑝)) is a linearmodel, we can further represent𝜙𝐿,𝑉 (𝑝)
as a column vector 𝝓𝑝 ∈ R𝑁𝐹 , and𝑊𝒖 (𝜙𝐿,𝑉 (𝑝)) as the multiplica-
tion of an instance-independent matrix W(1)

𝒖 ∈ R𝑁𝐴×𝑁𝐹 with 𝝓𝑝

plus a constant vector W(0)
𝒖 ∈ R𝑁𝐴 :

𝑾𝒖,𝑝 = W(0)
𝒖 + W(1)

𝒖 𝝓𝑝 , (19)

where we are stretching our use of sans-serif symbol for a vector
W(0)

𝒖 here for later simplicity of the generalized form (23). So, the
regression for the linear model returns the learned weights W̆(0)

𝒖

and W̆(1)
𝒖 via

(W̆(0)
𝒖 , W̆(1)

𝒖 ) = argmin
W(0)

𝒖 ,W(1)
𝒖

Edis
𝒖 (W(0)

𝒖 ,W(1)
𝒖 )

= argmin
W(0)

𝒖 ,W(1)
𝒖

∑
𝑞∈Πdis (𝑀)

𝒖0 (𝑞) − Â𝑠𝑐
𝑞 (W(0)

𝒖 + W(1)
𝒖 𝝓Π−1 (𝑞) )

2
Δ𝑄.

(20)

Likewise, a second-order model can be represented by

𝑾𝒖,𝑝 = W(0)
𝒖 + W(1)

𝒖 𝝓𝑝 + 1
2

W(2)
𝒖 : (𝝓𝑝𝝓⊤𝑝 ), (21)

whereW(2)
𝒖 ∈ R𝑁𝐴×𝑁𝐹×𝑁𝐹 is the second-order coefficients (tensor),

and the operator ‘:’ represents a contraction. The coefficients W(0)
𝒖 ,
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W(1)
𝒖 and W(2)

𝒖 are all instance-independent. The regression now
becomes

(W̆(0)
𝒖 , W̆(1)

𝒖 , W̆(2)
𝒖 ) = argmin

W(0)
𝒖 ,W(1)

𝒖 ,W(2)
𝒖

Edis𝒖 (W(0)
𝒖 ,W(1)

𝒖 ,W(2)
𝒖 )

= argmin

W(0)
𝒖 ,W(1)

𝒖 ,W(2)
𝒖

∑
𝑞∈Πdis (𝑀 )

𝒖0 (𝑞) − Â𝑠𝑐𝑞

(
W(0)

𝒖 + W(1)
𝒖 𝝓

Π−1 (𝑞) +
1
2

W(2)
𝒖 : (𝝓

Π−1 (𝑞)𝝓
⊤
Π−1 (𝑞)

)
)2 Δ𝑄.

(22)

In general, an 𝑛-th order model can be represented by

𝑾𝒖,𝑝 =

𝑛∑
𝑘=0

1
𝑘!

W(𝑘)
𝒖 : (𝝓𝑝 ⊗ · · · ⊗ 𝝓𝑝︸           ︷︷           ︸

𝑘 times

), (23)

where W(𝑘)
𝒖 ∈ R𝑁𝐴×

𝑘 times︷      ︸︸      ︷
𝑁𝐹×···×𝑁𝐹 , and 0 times of tensor products

between 𝝓𝑝 is interpreted as a scalar of 1.
In essence, the regression (for a model𝑊𝒖 (𝜙𝐿,𝑉 (Π−1 (𝑞)) of any

order) will become a standard least square problem:

(W̆(0)
𝒖 , . . . , W̆(𝑛)

𝒖 ) = argmin
W(0)

𝒖 ,...,W(𝑛)
𝒖

Edis
𝒖 (W(0)

𝒖 , . . . ,W(𝑛)
𝒖 )

= argmin
W(0)

𝒖 ,...,W(𝑛)
𝒖

∑
𝑞∈Πdis (𝑀 )

𝒖0 (𝑞) − Â𝑠𝑐
𝑞

𝑛∑
𝑘=0

1
𝑘!

W(𝑘 )
𝒖 : (𝝓Π−1 (𝑞) ⊗ · · · ⊗ 𝝓Π−1 (𝑞)︸                              ︷︷                              ︸

𝑘 times

)


2

Δ𝑄.

(24)

1.9 Generating Orientation Field
Once we have learned the model, the initial orientation 𝒖 (𝑡, 𝑝) at a
point 𝑝 on the object surface at time 𝑡 can be estimated as

𝒖 (𝑡, 𝑝) = Â𝑝𝑾𝒖,𝑝 . (25)

For an 𝑛-th order model, this is

𝒖 (𝑡, 𝑝) = Â𝑝

𝑛∑
𝑘=0

1
𝑘!

W(𝑘)
𝒖 : (𝝓𝑝 ⊗ · · · ⊗ 𝝓𝑝︸           ︷︷           ︸

𝑘 times

). (26)

We evaluate 𝒖 (𝑡, 𝑝) at each vertex of the surface mesh of the object,
which requires the evaluation of Â𝑝 and 𝝓𝑝 at the vertex, for also
occluded ones and back-facing ones. Ideally, all of these quantities
can still be computed by using a vertex shader (for 𝑑𝑆 or 𝒐2,𝑠 , we
can use the data at the visible point 𝑝vis on the line of sight between
the viewpoint and 𝑝). In our prototype implementation, we just
use the data at 𝑝vis for all of them instead, admitting that this work
around (though simple) would introduce unwanted alternation to
the resulting orientation field (though such alternation seems to be
mitigated by our vector field smoothing).

Once we have the initial orientations at vertices, we convert
them to the discrete 1-forms stored at edges following Fisher et
al. [2007]. Suppose that an edge 𝑒𝑖 𝑗 has its start and end points 𝑝𝑖
and 𝑝 𝑗 , with the corresponding positions 𝒑𝑖 and 𝒑 𝑗 , respectively,
we assign to it the following discrete 1-form 𝑐𝑖 𝑗 (a scalar):

𝑐𝑖 𝑗 =
𝒖 (𝑡, 𝑝𝑖 ) + 𝒖 (𝑡, 𝑝 𝑗 )

2
· (𝒑 𝑗 − 𝒑𝑖 ). (27)

1.10 Smoothing Orientation Field
Our prototype implementation solves the optimization (7) in our
main paper sequentially. First spatially:

�̆�𝑘𝑠 = argmin
�̃�𝑘𝑠

(
★1

�̃�𝑘𝑠 − 𝒄𝑘
2

+ 𝜆𝑠 (�̃�𝑘𝑠 )⊤𝑳1 �̃�
𝑘
𝑠

)
, (28)

and then temporally:

�̆�𝑘 = argmin
�̃�𝑘𝑡

(
★1

�̃�𝑘𝑡 − �̆�𝑘𝑠

2
+ 𝜆𝑡

★1
Δ𝑡

�̃�𝑘𝑡 − �̃�𝑘−1
𝑡

2
)
, (29)

where we set �̆�0
𝑠 = �̆�1

𝑠 . For the construction of the operators ★1 and
𝑳1 of discrete exterior calculus, we use the PyDec library [Bell and
Hirani 2008, 2012]. Note that with this sequential approach, the
spatial smoothing (28) can be solved per frame independently, and
the temporal smoothing (29) can be solved per frame sequentially
(only using the data from the previous frame �̃�𝑘−1

𝑡 and the spatially
smoothed current frame �̆�𝑘𝑠 ). This approach enables incremental
processing of the animation data, and the result of earlier frames are
not affected when additional frames are later added to the sequence.

1.11 Anchor Points
We predetermine our anchor points (initial points for strokes) such
that

• the anchor points are more or less evenly spaced, and
• the anchor points form a hierarchy.

We build such a hierarchy of anchor points via incremental Poisson
disk sampling. We first use point cloud utils library [Williams 2018],
which implements a Poisson disk sampling algorithm by Bowers et
al. [2010], to generate points at level 0 on the object surface with
the initial radius 𝑟0, set to 5% of the diagonal length of the bounding
box of the object. When proceeding to the next level 𝑖 , we first
reduce the radius by a factor of 0.5, i.e., 𝑟𝑖 = 0.5𝑟𝑖−1. To generate the
points in the 𝑖-th level, ideally, we should first register all the points
in the levels 0, 1, . . . , 𝑖 − 1 with the reduced radius 𝑟𝑖 , and continue
the Poisson disc sampling. In our prototype implementation, this
step is instead approximated by first generating a set of points from
scratch using the reduced radius 𝑟𝑖 , then for each point in one of
the previous levels 0, 1, . . . , 𝑖 − 1, we identify the closest point in
the newly sampled point set and delete that point. We treat the rest
of points as those in the level 𝑖 . This process is repeated to create a
hierarchy of levels 0, 1, 2, and 3.

1.12 Generating Strokes
We convert the discrete 1-form smoothed using (29) back to a vec-
tor field �̆� using the Whitney bases according to (4) in Fisher et
al. [2007]. Note that we do not care the length of the vectors queried
from �̆� in what follows.

We generate strokes by first computing integral curves of the
vector field (also using the length queried from our model) to decide
their center lines. Then, we generate polygons from the centerlines
and the queried width. Finally, these polygons are drawn with the
queried colors and the specified texture onto the screen.

To generate a center line, we start from an anchor point 𝑝 (0) .
We use the superscript, e.g., (0), here to identify the vertex index
of the discrete center line. That is, 𝑝 (0) , 𝑝 (1) , . . . forms the discrete
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line strip of the center line, and 𝑝 = 𝑝 (0) is the anchor point or
the start point of the line strip. For information that only depends
on the start point (i.e., width, length, and color), we will simply
use 𝑝 . We perform nearest neighbor query to our model to obtain
the width 𝑤𝑝 , length 𝑙𝑝 , and color 𝑪𝑝 at 𝑝 = 𝑝 (0) . Recall that 𝑤𝑝

and 𝑙𝑝 are measured in the screen space. If necessary, the user may
multiply globally constant scalars to𝑤𝑝 and 𝑙𝑝 for adjustment. For
the orientation, we first randomly sample an angle offset 𝜉𝑝 and
query the unaltered initial tangent vector 𝒖𝑝 (0) from the smoothed
vector field �̆�. Then, we rotate 𝒖𝑝 (0) by 𝜉𝑝 within the facet (i.e., a
rotation along the normal of the current facet) to obtain the altered
tangent �̂�𝑝 (0) . We traverse along the facets of the surface mesh to
construct the center line. We use a scalar 𝑙𝑎𝑐𝑐𝑝 , initialized to 0, to
accumulate the projected length of the discrete line strip on the
screen during the traversal.

Starting from 𝑝 (𝑖) (𝑖 = 0 initially), we move along �̂�𝑝 (𝑖 ) until we
first reach a point 𝑝 (𝑖+1) on an edge between facets. We compute
the projected length Δ𝑙𝑖,𝑖+1 = ∥Π(𝑝 (𝑖+1) ) − Π(𝑝 (𝑖) )∥ on the screen
space and accumulate Δ𝑙𝑖,𝑖+1 to 𝑙𝑎𝑐𝑐𝑝 . If 𝑙𝑎𝑐𝑐𝑝 ≥ 𝑙𝑝 , we terminate the
traversal. Otherwise, we continue the traversal by moving onto
the adjacent facet, querying the unaltered tangent 𝒖𝑝 (𝑖+1) from �̆�

at 𝑝 (𝑖+1) on the new facet, and performing a rotation along the
normal of the new facet by the angle 𝜉𝑝 to get the altered tangent
�̂�𝑝 (𝑖+1) . We repeat this process until 𝑙𝑎𝑐𝑐𝑝 ≥ 𝑙𝑝 is satisfied.

Note that there are cases where the above process does not
terminate (about 9.8%). There are three possible cases (the first two
are rare and the last one is most probable). The first is that the
sampled tangent vector 𝒖𝑝 (𝑖 ) is zero. Theoretically, many closed
surfaces possess such singular points somewhere on the surface
(the number depends on their topology). But in reality, the chance
to hit such a singular point is rare. We have a fail safe for such a case
to simply terminate the traversal there. The second and third cases
are due to the fact that the vector field �̆� converted from the one
form (using theWhitney bases) is not necessarily continuous across
facets. In the second case, we may end up at repeatedly traversing
among several facets at a vicinity of a mesh vertex and see almost
no progress in terms of the accumulated projected length of the
discrete line strip. For this case, we terminate the traversal if Δ𝑙𝑖,𝑖+1

is smaller than a threshold (set to 10−5) for a successive number of
times (set to 10). In the third case, we may be forced to stay back in
the same facet when trying to cross an edge. For such a case, we
simply terminate at the point on the edge.

Once we have the discrete line strip, we turn it into a polygon
strip. At each vertex 𝑝 (𝑖) of the strip, we compute the local frame
F(𝑖) formed by the tangent 𝑭 (𝑖)

𝑡 , normal 𝑭 (𝑖)
𝑛 , and bi-normal 𝑭 (𝑖)

𝑏
:

F(𝑖) =
(
𝑭 (𝑖)
𝑡 𝑭 (𝑖)

𝑛 𝑭 (𝑖)
𝑏

)
, (30)

then extend the strip along the bi-normal as follows. If 𝑝 (𝑖) is the
start or end point, the normal 𝑭 (𝑖)

𝑛 and tangent 𝑭 (𝑖)
𝑡 are simply

taken to be the facet normal at 𝑝 (𝑖) and �̂�𝑝 (𝑖 ) , respectively. For
each remaining point 𝑝 (𝑖) (on an edge), we use libigl [Jacobson
et al. 2018] to compute the edge normal for 𝑭 (𝑖)

𝑛 . For the tangent
vectors, we take the tangent vectors �̂�𝑝 (𝑖−1) and �̂�𝑝 (𝑖 ) of the adjacent

line segments, and set 𝑭 (𝑖)
𝑡 to be their normalized average: 𝑭 (𝑖)

𝑡 =

N(N(�̂�𝑝 (𝑖−1) ) + N (�̂�𝑝 (𝑖 ) )), whereN is the normalization operator:

N(𝒙) := 𝒙
∥𝒙 ∥ . Finally, we compute 𝑭 (𝑖)

𝑏
= 𝑭 (𝑖)

𝑡 × 𝑭 (𝑖)
𝑛 .

To extend the line strip using the local frames, at each 𝑝 (𝑖) we
generate two shifted points 𝑝 (𝑖)− and 𝑝

(𝑖)
+ along the bi-normal as:

𝑝
(𝑖)
− = 𝑝 (𝑖)−𝜂𝑭 (𝑖)

𝑏
and 𝑝 (𝑖)+ = 𝑝 (𝑖)+𝜂𝑭 (𝑖)

𝑏
, where the unknown scalar

𝜂 is determined such that the projected width 𝑤 (𝑖) = ∥Π(𝑝 (𝑖)+ ) −
Π(𝑝 (𝑖)− )∥ equals𝑤𝑝 .

Prior to the drawing of the stokes onto the screen, we sort their
drawing order following the procedure discussed in our main paper.
Here, we describe the details regarding the sorting operation. We
convert the color 𝑪𝑝 to the 𝐿∗𝑎∗𝑏∗ color space and use the 𝐿∗

value as the key for sorting. We use the merge sort algorithm, for
preserving the orders of strokes with the same 𝐿∗ key from the
previous frame. Inconsistent sorting algorithms, such as quick sort,
would break the orders, and would thus degrade the coherency.

When rendering the strokes, we perform the depth test only
against the underlying object (no depth tests between strokes). We
first draw the underlying object with a tiny negative depth offset.
Then, we set the depth buffer to read only and draw the strokes
according to the sorted order, accounting for the their colors and
the brush texture.

2 ADDITIONAL ANALYSES
2.1 Additional Regression Results
We have tested the first, second, and third order models in our
regression for 6 different examples (see Fig. 1). The first order model
tends to well fit the exemplar orientations for simpler geometries as
in sphere and blobby examples shown in ourmain paper. Depending
on the complexity of the exemplars and underlying geometries,
the reconstruction error may increase due to the conflicts of the
different orientations on similar features. Even though second and
third order models would allow better alignment with the exemplar
orientations, we chose the first order model since it is more stable
and require less computation time and storage, thanks to its much
smaller number of coefficients.

2.2 Different Factors
In terms of the orientations, we examined the dominance of the
weights with respect to the three (lighting, silhouette, and normal)
categories of the canonical sections, with dominance defined by
the ratio between the sum of the weights (in absolute values) in
the chosen category and that of all weights. As shown in Fig. 2, the
blobby example (Fig. 5 of our main paper) has lighting-dominant
orientations (corresponding weights dominate up to 58%) near the
center, silhouette-dominant orientations (corresponding weights
dominate up to 62%) at outer regions, and normal-dominant orienta-
tions (corresponding weights dominate up to 77%) at high curvature
regions. In terms of the widths, for the monkey example (5:52 in
our video), the strokes are thin at its nose but thick between its
nose and mouth. This is mainly affected by the mean curvature.
These tendencies agree with the artist’s intention expressed in the
exemplars.
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1st-order 2nd-order 3rd-order 1st-order 2nd-order 3rd-order

Figure 1: Additional evaluations of our regression. We
compare exemplar orientations (blue arrows) with recon-
structed orientations (red arrows) for the first, second, and
third order models on double-vortex sphere, spot, monkey,
head, fertility, and gargoyle examples.

2.3 Performance
The amortized cost per frame is approximately 1 minute for the
stroke field generation (including spatial and temporal smoothing),
and 7 minutes for synthesizing the strokes on a typical desktop PC.
Our regression scales with the image resolution, stroke field synthe-
sis scales with the mesh resolution and the number of frames, and
synthesis of individual strokes scales with the numbers of anchor
points and frames. They respectively take 4.4%-20%, 0.01%-0.2%,
and 80.6%-94.5% of the overall computation time for animations of
150 frames.

2.4 Stroke Patterns
In Fig. 3, we summarized the prominent stroke patterns observed
in our video. The gargoyle example (8:42 of our video) has strokes
forming like a spiral towards the center of its right wing. The
average ratio of length-to-width in the gargoyle example is 30.
Strokes maymake a sharp turn when there is a rapid variation in the
vector field, as seen at the bottom part of the parent in the bottom
layer of ‘fertility’ object (6:53 of our video). The superimposed result
(7:38 of our video) gives more varieties of stroke patterns.

2.5 Nearest-neighbor Queries
We do not have a threshold for closeness. For Fig. 5 of our main
paper, we see an average of 98% overlap between the ranges of

58%, 22%, 20% 33%, 62%, 6% 17%, 6%, 77%

(a) (b) (c) (d)

Figure 2: Dominance of weights for the three categories of
canonical sections. For a frame of the blobby example, we
show the orientation field on the surface in (a), and its com-
ponents from lighting-based, silhouette-based, and normal-
based canonical sections in yellow arrows in (b), (c), and (d),
respectively.We used the same colormap to encode the dom-
inance (the ratio between the sum of the absolute magni-
tudes of the corresponding weights to that of all weights) in
(b-d), where pure black and pure white indicate 0 and 100%,
respectively. The bluemarkers in (b-d) indicate the locations
where we observe the maximum dominance in the category,
and the tuples of the percentages from left to right show
the percentages of the lighting-based, silhouette-based, and
normal-based dominance at the marker points.

the queried features and those of the exemplar ones for each di-
mension in the proxy space with the smallest (85%) overlap seen
for the diffuse intensity as shown in Fig. 4. In the full proxy space,
the diameter of the bounding sphere of the 90% percentile of the
exemplar data is 4.16, while the average and standard deviation of
the Euclidean distances between the query points and their nearest-
neighbor exemplar points are 0.55 and 0.25, respectively. Guiding
the gathering of the exemplars for a bounded closeness would be
an interesting future work.

2.6 Higher-order Representations
Ahigher-order model is less stable, as illustrated in Fig. 5. For blobby
(Fig. 5 of our main paper), the first- and second-order representa-
tions respectively resulted in absolute values of the weights with
averages around 0.8 and 3.9 consistently over frames, and standard
deviations around 0.15 and 1.9. The maximum values varied consis-
tently from 1.3 to 1.5 over frames for the first-order representation,
but largely (from 5.3 to 35) for the second-order one with larger
values frequently encountered when synthesizing the back side.

3 MORE DETAILS FOR FUTUREWORK
We have designed the encoding of the features such that the trans-
ferred stroke styles would look reasonable even when we use a
single exemplar. This is done by relativizing and normalizing the
features in a common feature space across settings. When using
a different encoding, it is important that the exemplars contain
enough samples such that there will not be too much extrapolation
during the transfer. It would be interesting to have an automatic ap-
proach that can tell if an enough variation of samples are collected
during the exemplar preparation and annotation process.

It would be interesting to also learn the correlation among neigh-
boring strokes for the colors, lengths, widths, and orientations. Cur-
rently, (though nice for a painterly rendering) neighboring strokes
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(a) (b)

Figure 3: Stroke patterns observed in our results. (a) Spiral
and long thin strokes in the gargoyle example. (b) Sharp turn
in fertility example.
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Figure 4: Data alignment between queried features and ex-
emplar features. We have tested all 9 feature spaces in the
plots; their horizontal axes show the frame count (left: 1,
right: 150), and their vertical axes show the (relativized and
normalized) feature value (bottom: −1, top: 1). The painted
regions in light blue indicate the coverages of the exemplar.
There are three orange lines in each plot: the center one
shows the average value 𝜇query of the queried features, and
the top and bottom orange lines show the maximum and
minimum of the queried features, respectively. The num-
bers next to the feature labels show the percentage of the
queried data (i.e., between the top and bottom orange lines)
that reside in the range of the exemplar (i.e., the light blue re-
gion). The painted regions in light orange indicate the range
of 𝜇query ± 𝜎query, where 𝜎query is the standard deviation of
the queried features.

in our generated results may have a large variation in colors even
when neighboring strokes in the exemplar have coherent colors. We
could configure the sorting procedure or the color model to produce
coherent colors, but we do not have a continuous control over this
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(a) 1st-order (b) 2nd-order

Figure 5: Stability of regression model. The horizontal axes
show the frame count, and the vertical axes show the
weights (in absolute values) returned from the models. The
three orange lines in each plot from top to bottom show the
maximum, average (𝜇 |𝑤 |), and minimum of the absolute re-
turned weights, while the painted orange regions indicate
the range of 𝜇 |𝑤 | ±𝜎 |𝑤 | , where 𝜎 |𝑤 | is the standard deviation
of the absolute returned weights. (a) First-order model ex-
hibits stable weight variation over frames, while (b) second-
order model has large weight values for the queries near the
backside (1-st and 76-th frames correspond to the completely
front and back sides).

correlation. We believe that a stochastic model for a generalized
randomness would be an important future work.

While we have focused on the automatic generation of animat-
able strokes from exemplars, it would be also interesting to offer
interactive artistic control during the generation of stroke field
as well as the integral curves. Allowing for local edits or online
learning from new exemplars would offer more flexibility in the
generated styles. We have not done any optimization of our code
written in python, and acceleration would be crucial for interactive
control.

Although theway of overdrawing strokes is acceptable for opaque
media, application to transparent media, such as water color, would
require careful consideration for removing already generated strokes
as well as their mixing. Extending our work for atmospheric partic-
ipating media would be another interesting extension.

The generation of a temporally stable result relies on a spatially
and temporally coherent orientation field. Our current way for the
construction of the orientation field does not perform topological
optimizations for the singular points of the orientations. This would
be important if wewant to incorporate additional canonical sections
varying rapidly in time, such as the suggestive contours [DeCarlo
et al. 2003]. Also, extending our work using tensor fields rather
than vector fields would be attractive. We envision that bridging
more advanced geometry processing tools with stroke generation
would be an interesting future avenue to explore.
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