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1 Motivation for Mv

Figure 1 illustrates that the orientations of artist-drawn strokes

do not always align with predetermined basis directions, such as

principal curvature directions or luminance gradients. Instead, we

observe an unconscious combination of basis directions.

For example, beyond strokes following illumination cues, we see

strokes annotated in green, orange, and red in the right panel of

Figure 1. Compared to the principal curvature directions shown

in green in the left panel, the orange directions deviate from the

curvature directions, instead appearing as an intermediate blend

between the red silhouette directions and the curvature directions

in the interior.

The role of Mv is to convert features into coefficients for basis

fields, effectively capturing and learning this unconscious relation-

ship.
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Fig. 1. Stroke orientations in a saddle shape example.

2 Curvature for Isosurfaces of a Scalar Field
Let us use subscripts after a comma to indicate partial derivatives

(e.g., 𝜓,𝑥 :=
𝜕𝜓
𝜕𝑥 and 𝜓,𝑥𝑦 :=

𝜕2𝜓
𝜕𝑥𝜕𝑦 ). Then, the gradient of a scalar

field𝜓 is given by ∇𝜓 = (𝜓,𝑥 ,𝜓,𝑦,𝜓,𝑧)⊤, and its Hessian H(𝜓 ) and
the adjugate of the Hessian H∗ (𝜓 ) are given by

H(𝜓 ) = ©«
𝜓,𝑥𝑥 𝜓,𝑥𝑦 𝜓,𝑥𝑧
𝜓,𝑦𝑥 𝜓,𝑦𝑦 𝜓,𝑦𝑧
𝜓,𝑧𝑥 𝜓,𝑧𝑦 𝜓,𝑧𝑧

ª®¬ , H∗ (𝜓 ) = ©«
𝜓,𝑦𝑦𝜓,𝑧𝑧 −𝜓,𝑦𝑧𝜓,𝑧𝑦 𝜓,𝑦𝑧𝜓,𝑧𝑥 −𝜓,𝑦𝑥𝜓,𝑧𝑧 𝜓,𝑦𝑥𝜓,𝑧𝑦 −𝜓,𝑦𝑦𝜓,𝑧𝑥
𝜓,𝑥𝑧𝜓,𝑧𝑦 −𝜓,𝑥𝑦𝜓,𝑧𝑧 𝜓,𝑥𝑥𝜓,𝑧𝑧 −𝜓,𝑥𝑧𝜓,𝑧𝑥 𝜓,𝑥𝑦𝜓,𝑧𝑥 −𝜓,𝑥𝑥𝜓,𝑧𝑦
𝜓,𝑥𝑦𝜓,𝑦𝑧 −𝜓,𝑥𝑧𝜓,𝑦𝑦 𝜓,𝑦𝑥𝜓,𝑥𝑧 −𝜓,𝑥𝑥𝜓,𝑦𝑧 𝜓,𝑥𝑥𝜓,𝑦𝑦 −𝜓,𝑥𝑦𝜓,𝑦𝑥

ª®¬,
(1)

respectively. Then, the formulae by Goldman [2005] gives the Gauss-

ian curvature 𝜅𝐺 and mean curvature 𝜅𝑚 as

𝜅𝐺 =
(∇𝜓 )⊤H∗ (𝜓 )∇𝜓

|∇𝜓 |4
, 𝜅𝑚 =

(∇𝜓 )⊤H(𝜓 )∇𝜓 − |∇𝜓 |2 Tr H(𝜓 )
2|∇𝜓 |3

.

(2)

In practice, the computed object-space curvatures 𝜅𝐺 and 𝜅𝑚
can be noisy in very thin regions where ∇𝜓 approaches zero. To

address this, we apply a Gaussian filter to smooth𝜓 slightly before

computing the curvatures. This smoothing causes non-constant

regions of𝜓 to spread toward the vacuum region, effectively moving

zero-gradient regions closer to the vacuum. Since the free-path

distribution is zero in the vacuum, these regions contribute less

during the integration along the line of sight, improving numerical

stability.

3 Computing Distance from Silhouette for Medium
We discretize the following integral discussed in the main paper,

𝜉𝑀 (𝒖) =
∫

1

0

𝜉𝑀 (𝒖, 𝜂)𝑝dist (𝜂)𝑑𝜂, (3)

in an adaptive way. For 𝑝
dist
(𝜂), we use

𝑝
dist
(𝜂) ∝ exp

(
− (𝜂 − 𝜂𝑡 )

2

2𝜎2

)
, for 0 ≤ 𝜂 ≤ 1, (4)

with proper normalization, where we set 𝜂𝑡 = 0.9, and 𝜎 = 0.2.
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We approximate (3) in the following form:

𝜉𝑀 (𝒖) =
𝑁Int∑︁
𝑘=0

𝜉𝑀

(
𝒖,

𝜂𝑘 + 𝜂𝑘+1
2

)
(𝐹 (𝜂𝑘+1) − 𝐹 (𝜂𝑘 )), (5)

where 𝜂0 = 0 and 𝜂𝑁Int
= 1, and 𝜂𝑘 ’s are not evenly distributed. 𝐹 (𝜂)

is the cumulative distribution function of 𝑝
dist
(𝜂). We obtain this

form by performing Taylor expansion for 𝜉𝑀 (𝒖, 𝜂) up to first order,

and use the first order term as an error metric to determine 𝜂𝑘 ’s.

Suppose that 𝜂𝑘 ’s are given. Then, we can estimate the error

when we only use the zero-th order term for 𝜉𝑀 (𝒖, 𝜂) as follows.
First, we have

𝜉𝑀 (𝒖) =
𝑁Int∑︁
𝑘=0

∫ 𝜂𝑘+1

𝜂𝑘

𝜉𝑀 (𝒖, 𝜂)𝑝dist (𝜂). (6)

Expanding 𝜉𝑀 (𝒖, 𝜂) up to first order, we have

𝜉𝑀 (𝒖, 𝜂) ≈ 𝜉𝑀 (𝒖, 𝜂) + (𝜂 − 𝜂)
𝜕𝜉𝑀 (𝒖, 𝜂)

𝜕𝜂
. (7)

Let

𝜂𝑘 :=
𝜂𝑘 + 𝜂𝑘+1

2

. (8)

Then, we have an first order approximation
˜𝜉𝑀 (𝒖) (each term ex-

panded at the middle point of the corresponding interval) for (6)

as

˜𝜉𝑀 (𝒖) :=

𝑁Int∑︁
𝑘=0

∫ 𝜂𝑘+1

𝜂𝑘

{
𝜉𝑀 (𝒖, 𝜂𝑘 ) + (𝜂 − 𝜂𝑘 )

𝜕𝜉𝑀 (𝒖, 𝜂𝑘 )
𝜕𝜂

}
𝑝
dist
(𝜂)𝑑𝜂.

(9)

To compute the integration for the second term in the curly braces

in (9) (and noting that
𝜕𝜉𝑀 (𝒖,𝜂𝑘 )

𝜕𝜂 is a constant), we define𝑄 (𝑎, 𝑏) as

𝑄 (𝑎, 𝑏) :=

∫ 𝑏

𝑎

(
𝜂 − 𝑎 + 𝑏

2

)
𝑝
dist
(𝜂)𝑑𝜂. (10)

Let the integral of 𝐹 be 𝐺 . With integral by parts, we have

𝑄 (𝑎, 𝑏) = [𝜂𝐹 (𝜂)]𝑏𝑎 −
∫ 𝑏

𝑎

𝐹 (𝜂)𝑑𝜂 − 𝑎 + 𝑏
2

∫ 𝑏

𝑎

𝑝
dist
(𝜂)𝑑𝜂

=
𝑏 − 𝑎

2

(𝐹 (𝑏) + 𝐹 (𝑎)) − (𝐺 (𝑏) −𝐺 (𝑎)) . (11)

Plugging in (9), we have

˜𝜉𝑀 (𝒖) =
𝑁Int∑︁
𝑘=0

𝜉𝑀 (𝒖, 𝜂𝑘 ) (𝐹 (𝜂𝑘+1) − 𝐹 (𝜂𝑘 ))

+
𝑁Int∑︁
𝑘=0

𝜕𝜉𝑀 (𝒖, 𝜂𝑘 )
𝜕𝜂

𝑄 (𝜂𝑘 , 𝜂𝑘+1) . (12)

If we require the absolute value of each term in the second summa-

tion to be smaller than a threshold 𝜀, we must have���� 𝜕𝜉𝑀 (𝒖, 𝜂𝑘 )𝜕𝜂
𝑄 (𝜂𝑘 , 𝜂𝑘+1)

���� ≤ 𝜀. (13)

Since 𝜉𝑀 (𝒖, 𝜂𝑘 ) is a signed distance function, its partial derivative

𝜕𝜉𝑀 (𝒖,𝜂𝑘 )
𝜕𝜂 is essentially bounded by how fast the inverse of the

spatial derivative of transmittance 𝑇
(𝑀 )
𝑠 (𝒖) changes near the iso-

contour 𝑇
(𝑀 )
𝑠 (𝒖) = 𝜂, or more specifically, let 𝛿𝑘 be

𝛿𝑘 := max


1���∇𝒖𝑇 (𝑀 )𝑠 (𝒖)

���
������𝜂𝑘 ≤ 𝑇 (𝑀 )𝑠 (𝒖) ≤ 𝜂𝑘+1

 , (14)

then ���� 𝜕𝜉𝑀 (𝒖, 𝜂𝑘 )𝜕𝜂

���� ≤ 𝛿𝑘 . (15)

So,

|𝑄 (𝜂𝑘 , 𝜂𝑘+1) | ≤
𝜀

𝛿𝑘
. (16)

Starting from 𝑘 = 0 with 𝜂0 = 0, we find the largest 𝜂𝑘+1 satisfying

(16).

4 Standardization of Features
We apply standardization as in Todo et al. [2022] for features to

equalize their scales. The standardization is done for all the frames

simultaneously (to keep the procedure consistent over the frames).

4.1 𝐿★, 𝑎★, 𝑏★

We first convert the raw screen intensity 𝑰𝑠 (𝒖) into the correspond-

ing 𝐿★(𝒖), 𝑎★(𝒖), and 𝑏★(𝒖) components. Then, For the luminance

𝐿★, we apply a tone mapping T to obtain the tone mapped lumi-

nance 𝐼𝑠 , which is treated as the intensity feature, using the same

function as Todo et al. [2022] given below:

𝐼𝑠 (𝐿★) = T (𝐿★;𝐿max,ΘT ) := 𝐿max

(
2

exp(ΘT𝐿★)
exp(ΘT𝐿★) + 1

− 1

)
, (17)

where 𝐿max controls the upper limit of the tone mapped luminance,

and ΘT controls the curve. For standardization of the luminance,

we rescale and shift 𝐼𝑠 from [0, 𝐿max] to [−1, 1].
For the 𝑎★ and 𝑏★ components, we first compute the maximum

value 𝑐max = max( |𝑎★ |, |𝑏★ |), and then rescale [−𝑐max, 𝑐max] to
[−1, 1].

4.2 Apparent intensity gradient
For the apparent intensity gradient, we first compute its mean 𝜇

𝐼
∇

2

𝑠

and standard deviation Σ
𝐼
∇

2

𝑠

. Then, we rescale and shift [0, 𝜇
𝐼
∇

2

𝑠

+
2Σ

𝐼
∇

2

𝑠

] to [−1, 1].

4.3 Apparent curvatures

We first compute the (top) 2 percentile values 𝜅
(2%)
𝐺𝑠

, 𝜅
(2%)
𝑚𝑠 of the

absolute values of apparent Gaussian curvatures |𝜅𝐺𝑠 | and apparent
mean curvatures |𝜅𝑚𝑠 | over frames, respectively. Then, we compute

their maximum 𝜅max
as 𝜅max = max(𝜅 (2%)

𝐺𝑠
, (𝜅 (2%)

𝑚𝑠 )2). Note that the
absolute maximum of the mean curvature is squared to align the

unit with that of the Gaussian curvature. For the apparent Gaussian

curvature, we rescale [−𝜅max, 𝜅max] to [−1, 1], and for the apparent
mean curvature, we rescale [−

√
𝜅max,

√
𝜅max] to [−1, 1]. Note that

larger values (outside of [−1, 1]) are not clamped.
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4.4 Apparent normal
Since the apparent normals lie in the range [−1, 1] by construction,

we apply no standardization for them.

4.5 Temperature

We first compute the (top) 2 percentile value 𝐶
(2%)
𝑠 of the tempera-

tures𝐶𝑠 over frames. Then, we rescale and shift [0,𝐶 (2%)
𝑠 ] to [−1, 1].

No clamp is applied for values exceeding this range.

4.6 Apparent relative velocity

We first compute the (top) 2 percentile values 𝑣
(𝑥,2%)
𝑠 and 𝑣

(𝑦,2%)
𝑠 of

the absolute 𝑥- and 𝑦- components of the apparent relative veloci-

ties |𝑣 (𝑥 )𝑠 | and |𝑣
(𝑦)
𝑠 | over frames. We then compute the maximum

value as 𝑣max = max(𝑣 (𝑥,2%)
𝑠 , 𝑣

(𝑦,2%)
𝑠 ), and rescale [−𝑣max, 𝑣max] to

[−1, 1]. No clamp is applied for values exceeding this range.

4.7 Transmittance
We rescale and shift [0, 1] (the value range of transmittance) to

[−1, 1].

4.8 Apparent mean free-path

We compute the top and bottom 1 percentile values 𝑑
(top,1%)
𝑠 and

𝑑
(bottom,1%)
𝑠 over the frames.We then rescale [𝑑 (bottom,1%)

𝑠 , 𝑑
(top,1%)
𝑠 ]

to [−1, 1]. No clamp is applied for values exceeding this range.

4.9 Distance from silhouettes
We compute the maximum value 𝜉max

for the distance from sil-

houettes over frames (no absolute operator is applied). We then

rescale [−𝜉max, 𝜉max] to [−1, 1]. Note that no clamp is applied for

𝜉𝑠 < −𝜉max
.

5 Basis Fields
For the intensity gradient 𝑰 ( ∥ ) (𝒖) and its 90

◦
rotation 𝑰 (⊥) (𝒖), we

have

𝑰 ( ∥ ) (𝒖) := 𝔑(∇2𝐼 (𝒖)), (18)

and

𝑰 (⊥) (𝒖) := Rot𝜋/2 (𝔑(∇2𝐼 (𝒖))), (19)

where 𝔑(·) normalizes the vector in the screen space, and Rot𝜋/2 is

the 90
◦
rotation in the screen space.

For silhouette guided direction 𝒐 ( ∥ ) (𝒖) and its 90
◦
rotation 𝒐 (⊥) (𝒖),

we have

𝒐 ( ∥ ) (𝒖) := 𝔑(∇2𝜉𝑠 (𝒖)), (20)

and

𝒐 (⊥) (𝒖) := Rot𝜋/2 (𝔑(∇2𝜉𝑠 (𝒖))) . (21)

For apparent normal 𝒏( ∥ ) (𝒖) and its 90
◦
rotation 𝒏(⊥) (𝒖), we

have

𝒏( ∥ ) (𝒖) := 𝔑(𝒏(𝑥,𝑦)𝑠 (𝒖)), (22)

and

𝒏(⊥) (𝒖) := Rot𝜋/2 (𝔑(𝒏
(𝑥,𝑦)
𝑠 (𝒖))) . (23)

For gradient of apparent mean free-path 𝒎 ( ∥ ) (𝒖) and its 90
◦

rotation 𝒎 (⊥) (𝒖), we have

𝒎 ( ∥ ) (𝒖) := 𝔑(∇2𝑑𝑠 (𝒖)) (24)

and

𝒎 (⊥) (𝒖) := Rot𝜋/2 (𝔑(∇2𝑑𝑠 (𝒖))) . (25)

Finally, for relative velocity 𝒗 ( ∥ ) (𝒖) and its 90
◦
rotation 𝒗 (⊥) (𝒖),

we have

𝒗 ( ∥ ) (𝒖) := 𝔑(𝒗𝑠 (𝒖)), (26)

and

𝒗 (⊥) (𝒖) := Rot𝜋/2 (𝔑(𝒗𝑠 (𝒖))) . (27)

6 Orientation Smoothing
Let 𝒅 (𝑡, 𝒖) denote the orientation field obtained from the learned

model for the target scene. The smoothed field,
¯𝒅 (𝑡, 𝒖), is computed

as:

¯𝒅 = argmin

𝒅′

( ∫
𝑇

∫
Ω
∥𝒅′ − 𝒅∥2𝑑𝐴𝑑𝑡

+ 𝜆s
∫
𝑇

∫
Ω
∥∇2𝒅

′∥2𝑑𝐴𝑑𝑡 + 𝜆t
∫
𝑇

∫
Ω

(
𝜕𝒅′

𝜕𝑡

)
2

𝑑𝐴𝑑𝑡

)
,

(28)

where (𝑡, 𝒖) is omitted for brevity, 𝜆s and 𝜆t are spatial and temporal

smoothing coefficients, and 𝑇 and Ω denote the temporal domain

(start to end of the animation) and spatial domain (screen region),

respectively. ∇2 denotes the spatial gradient in screen space.

The corresponding discrete formulation is:

𝑽 = argmin

𝑽 ′
𝐸 (𝑽 ′), (29)

where 𝑽 encodes the spatially and temporally varying field 𝒗 into a

single long vector. The energy functional 𝐸 (𝑽 ′) is expressed as:

𝐸 (𝑽 ′) = (𝑽 − �̄� )⊤ Î(𝑽 − �̄� ) + 𝑽⊤D⊤Λ̂D𝑽 , (30)

where Î = diag(Δ𝐴Δ𝑡, ...,Δ𝐴Δ𝑡), Δ𝐴 = Δ𝑥Δ𝑦, Λ̂ is a diagonal matrix

consisting terms of 𝜆sΔ𝐴Δ𝑡 and 𝜆tΔ𝐴Δ𝑡 , and D is the discrete dif-

ferential operator consisting terms of
1

Δ𝑥 ,
−1

Δ𝑥 ,
1

Δ𝑦 ,
−1

Δ𝑦 ,
1

Δ𝑡 ,
−1

Δ𝑡 , and

0. By differentiating the energy functional 𝐸 (𝑽 ′) with respect to 𝑽 ′

and setting the derivative to zero, the smoothed field 𝑽 is obtained

by solving the following sparse linear system:

(Î +D⊤Λ̂D)𝑽 = Î�̄� . (31)

Unlike the discretization approach on curved surfaces employed

in stroke transfer for surfaces [Todo et al. 2022], our method op-

erates on a regular grid aligned with the screen resolution. This

makes the implementation straightforward and computationally ef-

ficient. Consequently, we can solve for smoothing across all frames

simultaneously, further enhancing scalability and performance.
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7 Stroke Rendering
Our goal in stroke rendering is to determine a set of anchor points

and corresponding strokes for each frame of the animation. The

inputs to this process include the attribute samplers 𝑆 (𝑛) (one per
frame), relative velocity fields �̂� (𝑛) , optional binary alpha masks

𝑀 (𝑛) , two stroke textures 𝑇𝐸 and 𝑇𝑁 (original and shrinked), and

discretization parameters such as timestep Δ𝑡 (the interval between
consecutive frames) and stroke step length Δ𝑙 .

An attribute sampler 𝑆 (𝑛) is a queryable structure that returns
stroke attributes—color, orientation, length, and width—at a given

screen-space position 𝒖. It can also be extended to return other

properties, such as region labels, which are transferred from exem-

plars in the same way as color, via regression. The relative velocity

field �̂� (𝑛) is defined as described in the main paper and is used

to advect anchor points across frames. The alpha mask 𝑀 (𝑛) , if
provided, represents a coarse binary segmentation of foreground

regions where strokes are to be drawn; it can be generated, for in-

stance, by thresholding transmittance. We use two stroke textures:

the original texture𝑇𝐸 , and a shrinked version𝑇𝑁 , analogous to the

use of reduced radii in particle resampling (e.g., [Yue et al. 2015]).

This design helps newly added strokes persist across frames, even

when undergoing slight motion. By applying overlap checks using

the smaller texture but rendering with the original one, we encour-

age spatial overlap between neighboring strokes, which can help

maintain visual density and continuity in animated sequences.

Stroke generation proceeds as described in Algorithm 1, which

loops over all frames. For each frame, the system propagates anchor

points and strokes from the previous frame (Algorithm 2), fills un-

covered regions with new strokes (Algorithm 3), sorts the strokes

(Algorithm 4), and removes strokes that are completely occluded

(Algorithm 5).

In the update step (Algorithm 2), the active set is initialized

using the alpha mask. Each anchor from the previous frame is

advected using the velocity field via a Runge–Kutta integration

scheme (TVDRK, Algorithm 6). A new stroke is then generated us-

ing Generate_Stroke (Algorithm 8), and its pixels are marked as

covered in the active set using the original texture 𝑇𝐸 .

In the addition step (Algorithm 3), new anchor points are sampled

from the remaining active regions. Each new anchor is assigned

randomized parameters and used to generate a stroke. The region

covered by the stroke is deactivated using the shrinked texture𝑇𝑁 to

allow strokes to overlap in rendering while preventing unnecessary

density.

Strokes are sorted (Algorithm 4) in creation order for a consis-

tent overdrawing effect, though other ordering strategies such as

luminance-based sorting are also possible.

Hidden strokes are removed (Algorithm 5) efficiently by rendering

strokes in reverse order (from front to back) and maintaining a

transparency buffer. If no pixels of a stroke remain visible (based

on alpha thresholds and accumulated transparency), it is flagged

for removal. This approach avoids quadratic time complexity and

allows for linear-time occlusion testing.

Each stroke is composed of two halves traced from an anchor

point. The function Generate_Stroke calls Generate_Stroke_Half
(Algorithm 7) in both forward and backward directions. Tracing

follows the screen-space orientation field given by the attribute

sampler and terminates based on stroke length, region boundary, or

degeneracy. Stroke length is determined dynamically as the aver-

age of sampled target lengths along the traced path, allowing early

or extended termination depending on the local field. The center-

line generated from tracing is then thickened based on the width

sampled at the anchor point to construct the final stroke geometry.

We use a three-stage Runge–Kutta method, TVDRK (Algorithm 6),

for accurate integration along the given vector field. While the pseu-

docode presents TVDRK as a single step, the actual implementation

subdivides it into multiple substeps for improved numerical stability

and smooth visual output. A rotation matrix is passed to TVDRK
to account for angular offsets or direction flipping needed when

tracing in both forward and reverse directions.

Algorithm 1 Generate_Strokes

Input: The set of frame indices N , texture 𝑇𝐸 for existing strokes,

shrinked texture 𝑇𝑁 for new strokes, attribute samplers {𝑆 (𝑛) },
relative velocities �̂� (𝑛)𝑠 , alpha masks {𝑀 (𝑛) }, timestep (interval

between consecutive frames) Δ𝑡 , step length Δ𝑙
1: A− ← ∅ ⊲ Set of anchor points from previous frame

2: S− ← ∅ ⊲ Set of strokes from previous frame

3: for 𝑛 ∈ N do
4: A′,S′, 𝐴← Update(A−,S−, 𝑀 (𝑛) ,𝑇𝐸 , 𝑆 (𝑛) , �̂� (𝑛)𝑠 ,Δ𝑡,Δ𝑙)
5: A+,S+ ← Add(A′,S′, 𝐴,𝑇𝑁 , 𝑆 (𝑛) ,Δ𝑙)
6: A,S ← Sort(A′,S′,A+,S+)
7: A,S ← Remove_Hidden(A,S,𝑇𝐸 ,𝑇𝑁 )
8: Save_Data(A,S, 𝑛)
9: A− ← A
10: S− ← S
11: end for

Algorithm 2 Update

Input: Anchors A− from previous frame, strokes S− from previ-

ous frame, mask𝑀 (𝑛) for the current frame, stroke texture 𝑇 ,

attribute sampler 𝑆 (𝑛) for the current frame, relative velocity

�̂� (𝑛)𝑠 for the current frame, timestep Δ𝑡 , step length Δ𝑙
Output: Advected anchors A′, advected strokes S′, active set 𝐴
1: 𝐴← 𝑀 (𝑛)

2: A′ ← ∅
3: S′ ← ∅
4: for 𝑎− ∈ A− do
5: 𝑎′ ← TVDRK(𝑎−, �̂� (𝑛)𝑠 ,Δ𝑡, I)
6: A′ ← A′ ∪ {𝑎′}
7: 𝑠′ ← Generate_Stroke(𝑎′, 𝑆 (𝑛) ,Δ𝑙)
8: S′ ← S′ ∪ {𝑠′}
9: 𝐴← Deactivate(𝐴, 𝑠′,𝑇 )
10: end for
11: return A′, S′, 𝐴
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Algorithm 3 Add

Input: Already generated anchors A′ and strokes S′, active set 𝐴,
Texture 𝑇 , attribute sampler 𝑆 (𝑛) , step length Δ𝑙

Output: Anchors A+ and strokes S+
1: A+ ← A′
2: S+ ← S′
3: while 𝐴 has active location do
4: 𝒖 ← Find_Random_Location_from_Active_Set(𝐴)
5: Ξ← Determine_Random_Numbers_for_Anchor()
6: 𝑎 ← {𝒖,Ξ}
7: A+ ← A+ ∪ {𝑎}
8: 𝑠 ← Generate_Stroke(𝑎, 𝑆 (𝑛) ,Δ𝑙)
9: S+ ← S+ ∪ {𝑠}
10: 𝐴← Deactivate(𝐴, 𝑠,𝑇 )
11: end while
12: return A+,S+

Algorithm 4 Sort

Input: Anchors A′ and strokes S′ that existed from the previous

frame (and have been advected during the current frame), newly

added anchors A+ and strokes S+
Output: Sorted anchors A and strokes S
1: ⊲ For the overdrawing effect, a stroke generated earlier should

be drawn onto the canvas before a stroke generated later. Since

the stroke order is preserved throughout other operations, we

simply append newly generated anchors and strokes to the end

of their respective lists.

2: A ← A′ ∪ A+
3: S ← S′ ∪ S+

Algorithm 5 Remove_Hidden

Input: Anchors A, strokes S, texture 𝑇𝐸 , texture 𝑇𝑁
Output: Anchors A, strokes S
1: ⊲ Strokes are drawn in reverse order. A buffer tracks the accumu-

lated (reduced) transparency. If no pixels pass the transparency

test for the current stroke, we set a remove flag for that stroke.

2: 𝑛𝑆 ← |S|
3: 𝐵 ← {1} ⊲ Initialize the transparent buffer to 1 (transparent)

everywhere

4: J ← ∅ ⊲ Indices of strokes to be removed

5: for 𝑗 ∈ {𝑛𝑆 − 1, 𝑛𝑆 − 2, · · · , 0} do
6: if not Visible(𝐵,S[ 𝑗],𝑇𝐸 ) then
7: J ← J ∪ { 𝑗}
8: end if
9: 𝐵 ← Update_Transparency(𝐵,S[ 𝑗],𝑇𝑁 )
10: end for
11: A ← Remove_from_List(A,J)
12: S ← Remove_from_List(S,J)

Algorithm 6 TVDRK

Input: Position 𝒖, vector field𝒘 , timestep Δ𝑡 , Rotation matrix R
Output: Advected position 𝒖′

1: 𝒗𝒖 ← 𝒘 (𝒖) ⊲ velocity

2: 𝒖1 ← 𝒖 + R𝒗𝒖Δ𝑡
3: 𝒗1 ← 𝒘 (𝒖1)
4: 𝒖2 ← 3

4
𝒖 + 1

4
(𝒖1 + R𝒗1Δ𝑡)

5: 𝒗2 ← 𝒘 (𝒖2)
6: 𝒖′ ← 1

3
𝒖 + 2

3
(𝒖2 + R𝒗2Δ𝑡)

7: ⊲ For simplicity, the above TVDRK is presented as a single step,

but in our implementation, we decompose the single step into

multiple sub-steps for more accurate advection

8: return 𝒖′

Algorithm 7 Generate_Stroke_Half

Input: Anchor 𝑎, attribute sampler 𝑆 , matrix factor F, step length

Δ𝑙
Output: Stroke 𝑠ℎ
1: 𝑤 ← 𝑆.𝑤 (𝑎.𝒖)
2: R← R(𝑎.Ξ) ⊲ Rotation corresponding to random angular

offset

3: 𝐿 ← 𝑆.𝐿(𝑎.𝒖) ⊲ Region label

4: 𝑙𝑠 ← [ 1
2
𝑆.𝑙 (𝑎.𝒖)]

5: 𝒖 ← 𝑎.𝒖
6: 𝑐 ← {𝒖} ⊲ Center line vertices

7: while 𝑆.𝐿(𝒖) = 𝐿 and Length(𝑠) < Average(𝑙𝑠 ) do
8: find Δ𝑡 such that |∥TVDRK(𝒖, 𝑆 .𝒅,Δ𝑡, FR) − 𝒖∥ − Δ𝑙 | ≤ 𝜀𝑙
9: 𝒖 ← TVDRK(𝒖, 𝑆 .𝒅,Δ𝑡, FR)
10: 𝑙𝑠 ← 𝑙𝑠 ∪ { 1

2
𝑆.𝑙 (𝒖)}

11: 𝑐 ← 𝑐 ∪ {𝒖}
12: end while
13: 𝑠ℎ ← Build_from_Centerline(𝑐,𝑤)
14: return 𝑠ℎ

Algorithm 8 Generate_Stroke

Input: Anchor 𝑎, attribute sampler 𝑆 , step length Δ𝑙
Output: Stroke 𝑠

1: 𝑠+ ← Generate_Stroke_Half(𝑎, 𝑆, I,Δ𝑙)
2: 𝑠− ← Generate_Stroke_Half(𝑎, 𝑆,−I,Δ𝑙)
3: return {𝑠− ∪ 𝑠+}

Algorithm 9 Deactivate

Input: Active set 𝐴, stroke 𝑠 , texture 𝑇
Output: Updated active set 𝐴′

1: 𝐴′ ← 𝐴

2: for 𝑃 ∈ 𝑠 (𝑇 ) do ⊲ For each pixel drawn for 𝑠 using 𝑇

3: 𝐴′ (𝒖 (𝑃)) ← inactive
4: end for
5: return 𝐴′

8 Scene Statistics
We summarize scene statistics in Table 1, including the camera

setting (dynamic or static), medium setting (dynamic or static), pres-

ence of surfaces, total number of frames, average number of strokes

per frame, and the frame indices of selected exemplar frames.
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Algorithm 10 Find_Random_Location_from_Active_Set

Input: Active set 𝐴
Output: Position 𝒖
1: P ← list of all active pixels in 𝐴

2: 𝐶 (P) ← cumulative distribution for P
3: 𝒖 ← sampling according to 𝐶 (P)
4: ⊲ For efficiency, the operations listed above are accelerated using

a quad-tree

5: return 𝒖

Algorithm 11 Visible

Input: Transparency buffer 𝐵, stroke 𝑠 , texture 𝑇

Output: True if stroke 𝑠 is not hidden, False otherwise
1: for 𝑃 ∈ 𝑠 (𝑇 ) do ⊲ For each pixel drawn for 𝑠 using 𝑇

2: ⊲ Check if the pixel drawn is not transparent (using some

threshold 𝜃𝛼 ):

3: 𝑏𝛼 (𝑃 ) ← 𝛼 (𝑃) ≥ 𝜃𝛼
4: ⊲ Check if the transparency buffer is not opaque enough to

hide the current pixel (using some threshold 𝜃𝐵 ):

5: 𝑏𝛼 (𝐵 (𝒖 (𝑃 ) ) ) ← 𝛼 (𝐵(𝒖 (𝑃))) ≥ 𝜃𝐵
6: ⊲ If both tests passed, then there is at least one pixel that is

visible:

7: if 𝑏𝛼 (𝑃 ) and 𝑏𝛼 (𝐵 (𝒖 (𝑃 ) ) ) then
8: return true
9: end if
10: end for
11: ⊲ If none of the pixels passed the tests, then the stroke is invisi-

ble:

12: return false

Algorithm 12 Update_Transparency

Input: Transparency buffer 𝐵, stroke 𝑠 , texture 𝑇

Output: Updated transparency buffer 𝐵′

1: 𝐵′ ← 𝐵

2: for 𝑃 ∈ 𝑠 (𝑇 ) do ⊲ For each pixel drawn for 𝑠 using 𝑇

3: ⊲Multiply the transparency 1−𝛼 (𝑃) with the values stored

in the buffer:

4: 𝐵′ (𝒖 (𝑃)) ← (1 − 𝛼 (𝑃))𝐵(𝒖 (𝑃))
5: end for
6: return 𝐵′

Table 1. Scene statistics.

Scene Camera Medium Surface

♯Animation Avr. ♯Strokes Exemplar

frames per frame frames

Rising Smoke dynamic dynamic - 240 57,706 114, 216

Clouds static dynamic - 500 121,125 336, 60, 456

Ring Fire (Dense) static dynamic - 240 56,424 144, 48, 198

Ring Fire (Thin) static dynamic - 240 167,798 186, 72

Dense Static Medium dynamic static - 150 125,605 42

Surface Only dynamic - monkey 149 75,751 42

Wood and Fire static dynamic wood 240 64,103 228, 54, 168, 90

Colliding Smokes static dynamic - 240 36,030 216

Laminar to Turbulent static dynamic - 229 50,484 72, 192, 24

Foggy Forest dynamic dynamic trees, ground 390 55,957 66, 282, 186, 366

Fire static dynamic - 240 56,389 228

Other
7.1%

Intensity
22.9%

Apparent relative velocity
14.7%

Transmittance
5.8%

Apparent normal
8.1%

Apparent mean free path
9.4%

Curvatures
8.5%

Distance from silhouettes
23.5%

Fig. 2. Breakdown of the computation time for features and basis
fields.

9 Detailed Timing
The computation of features and basis fields is embarrassingly par-

allel across frames. With Apple Silicon M4 Max CPU, computations

can be distributed to the 12 Performance Cores at a time, and a scene

with participating media at a volume resolution of 512 × 512 × 512

and a screen resolution of 512 × 512 takes approximately 7 seconds

per frame under this parallelism. Figure 2 presents a breakdown of

the computation time for features and basis fields.

For exemplar frame selection, we downsample feature maps to

128 × 128 and sample every sixth frame, yielding 40 candidates

for a 240-frame animation. Fitting a GMM takes 0.37 seconds per

frame, and the exemplar selection algorithm adds 0.10, 0.20, 0.29,

and 0.40 seconds per frame for selecting the first through fourth

exemplars, respectively. If the process selects two exemplars, it

incurs the cost of attempting a third and discarding it, resulting in a

total of 40× (0.37+0.10+0.20+0.29) = 38.8 seconds of computation.

The regression takes approximately 3 seconds, and the transfer

takes 6.2 seconds per frame. The stroke generation time depends on

the number of generated strokes (e.g., about 9 seconds for 30, 000

strokes and 60 seconds for 130, 000 strokes).

Preparing a single exemplar frame requires approximately 20

minutes for painting colors and 15 minutes for defining orientations,

widths, and lengths.

10 Comparison to Previous Methods
We compare our method against two patch-based approaches [Fišer

et al. 2016; Texler et al. 2020], a neural transfer method [Ghiasi

et al. 2017], two stroke-based neural transfer methods [Hu et al.

2023; Kotovenko et al. 2021], and a diffusion-based text-to-video

method [Liu et al. 2024]. These methods were selected based on the

availability of source code and successful execution without errors.

For the methods by Fišer et al.[2016], Ghiasi et al.[2017], and

Kotovenko et al.[2021], whose implementations accept only a sin-

gle style image, we used the first exemplar frame selected by our

method and drawn by the user. Texler et al.[2020] supports multiple

style images; we provided all user-drawn exemplars selected by our

method. For Hu et al. [2023], which requires a sequence of stylized

images, we used color attributes obtained by applying the stroke

transfer framework to image-based features.
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Liu et al. [2024] did not release the implementation supporting

conditional inputs. Therefore, we used our user-drawn exemplar

frames as style images, along with a text prompt describing the

scene.

Results are presented in our supplementary and additional videos.

Participating media require structured, temporally coherent strokes

to represent dynamic, non-rigid motion. Patch-based methods tend

to introduce stitching artifacts and often fail to preserve stroke

structure. Similar issues appear in the neural transfer method [Ghi-

asi et al. 2017], where brushstroke fidelity and motion coherence

degrade significantly.

Stroke-based neural transfer methods [Hu et al. 2023; Kotovenko

et al. 2021] struggled to reproduce the intended stroke shapes—often

generating blocky patterns—and frequently altered stroke colors

and styles. These inconsistencies become more pronounced in an-

imations. The text-to-video method [Liu et al. 2024], when used

without conditioning, was unable to generate stroke-based anima-

tions aligned with the desired scene.

In contrast, our method avoids these issues and produces tem-

porally coherent stroke animations that faithfully reflect the user’s

intended style.

11 Importance of Features
In Figure 3, we present the learned model Mv for each scene, high-

lighting the diverse utilization of features across different scenarios.

For instance, Ring-Fire (Dense) primarily relies on intensity-based

features, while Laminar-to-Turbulence heavily utilizes velocity-

based features. The Surface-only scene incorporates curvature and

normal features alongside intensity-based, velocity-based, silhou-

ette and transmittance
1
features, and Foggy-Forest also makes use

of curvature features.

Our feature and basis field design is not aimed at minimizing the

feature set; instead, we focus on expanding the model’s degrees of

freedom to simplify the learning process. This approach enables the

system to effectively train models even with low-order (e.g., linear)

regression.

12 Ablation Settings
We detail the five settings (no illuminations, no normals or curva-

tures, no silhouettes, no velocities, and no additional volumetric

cues) in Table 2.

13 Performance of Transfer
To further validate the effectiveness of the attribute transfer, we

conducted an additional test using validation exemplars provided

by a human user for intermediate frames. These frames were not

included during training. The user annotated stroke widths, lengths,

and orientations on rendered images, which served as validation

exemplars. We then compared these manually specified attributes

with those predicted by our original model. As shown in Figures 4, 5,

6, 7, 8, 9, 10, 11, 12, 13, and 14, the results closely align, demonstrating

that our method robustly generalizes and reliably transfers stylistic

attributes to unseen frames.

1
For this surface only example, the transmittance is essentially a binary mask separating

the foreground from the background.

Ring Fire (dense)Rising Smoke Ring Fire (thin)

Surface OnlyClouds Dense Static Medium

Laminar to TurbulentWood and Fire Colliding Smokes

Foggy Forest Fire

˜ ˜ ˜ ˜ ˜ ˜

˜ ˜ ˜ ˜
˜ ˜

˜ ˜ ˜ ˜ ˜ ˜

˜ ˜ ˜ ˜

Fig. 3. Learned model Mv for each scene.
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Fig. 4. Validation of attributes for an intermediate frame (Rising
Smoke). Errors for colors, widths, and lengths are relative errors. For orien-
tation, we show cosine similarity.
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Table 2. Features and basis fields included in each setting of the ablation study. Sections refer to those in the main paper.

Features / basis fields No illuminations No normals or curvatures No silhouettes No velocities No additional volumetric cues

Intensity and apparent intensity gradient (§5.2.1) - ✓ ✓ ✓ ✓
Apparent Gaussian and mean curvatures (§5.2.2) ✓ - ✓ ✓ ✓

Apparent normals (§5.2.3) ✓ - ✓ ✓ ✓
Temperature (§5.2.4) ✓ ✓ ✓ ✓ -

Apparent relative velocity (§5.2.5) ✓ ✓ ✓ - ✓
Transmittance (§5.2.6) ✓ ✓ ✓ ✓ -

Apparent mean free-path (§5.2.7) ✓ ✓ ✓ ✓ -

Distance from silhouettes (§5.2.8) ✓ ✓ - ✓ ✓

Intensity gradient and its 90
◦
rotation - ✓ ✓ ✓ ✓

Silhouette-guided direction and its 90
◦
rotation ✓ ✓ - ✓ ✓

Apparent normal and its 90
◦
rotation ✓ - ✓ ✓ ✓

Apparent relative velocity and its 90
◦
rotation ✓ ✓ ✓ - ✓

The gradient of apparent mean free-path and its 90
◦
rotation ✓ ✓ ✓ ✓ -
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Fig. 5. Validation of attributes for an intermediate frame (Clouds).
Errors for colors, widths, and lengths are relative errors. For orientation, we
show cosine similarity.

14 Proof for Free-Path Distribution Approaching Delta
Function

Definition 1. We say that 𝜎 (𝑥) is an extinction function if 𝜎 (𝑥) ≥
0 for ∀𝑥 ∈ R ̸− , where R̸− = [0,∞). We assume that the viewpoint is
located at 𝑥 = 0, and the region ∀𝑥 ∈ R̸− corresponds to the line of
sight.

Definition 2. We say that an extinction function𝜎 (𝑥) is reasonably
mild if and only if 𝜎 (𝑥) is bounded (i.e., 0 < ∃𝑀𝜎 < ∞, such that
|𝜎 (𝑥) | < 𝑀𝜎 ) and Riemann integrable.

Definition 3. We say that an extinction function 𝜎 (𝑥) has a
vacuum-medium boundary at 𝑥 = 𝑥0, where 𝑥0 > 0, if and only if
𝜎 (𝑥) = 0 for 𝑥 < 𝑥0, 𝜎 (𝑥) is right-differentiable at 𝑥 = 𝑥0, and there
exists 𝛾𝜎 > 0 such that 𝜎 (𝑥) > 0 for 𝑥0 < 𝑥 ≤ 𝑥0 + 𝛾𝜎 . The last two
conditions can be equivalently posed as 1) 𝜎 (𝑥) is right-continuous
(lim𝑥 ′↓𝑥 𝜎 (𝑥 ′) = 𝜎 (𝑥)) for 𝑥0 < 𝑥 ≤ 𝑥0 + 𝛾𝜎 , and 2) for 0 < ∀𝜀 ≤ 𝛾𝜎 ,
𝜎 (𝑥) is bounded in the following sense:

𝜎𝑥0
+ 𝑘1 (𝜀)𝜀 ≤ 𝜎 (𝑥0 + 𝜀) ≤ 𝜎𝑥0

+ 𝑘2 (𝜀)𝜀, (32)
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Fig. 6. Validation of attributes for an intermediate frame (Ring Fire
(Dense)). Errors for colors, widths, and lengths are relative errors. For
orientation, we show cosine similarity.

where 𝛾𝜎 (and hence 𝜀) can be taken small enough so that 𝜎𝑥0
+

𝑘1 (𝜀)𝜀 > 0 for 0 < 𝑥 ≤ 𝜀, and as 𝜀 ↓ 0, the bound can be made tighter
such that lim𝜀↓0

𝑘1 (𝜀 )
𝑘2 (𝜀 ) = 1. These conditions are for defining the bound-

ary (0 extinction between the viewpoint at 𝑥 = 0 and the boundary
𝑥 = 𝑥0, and a region with non-zero length of non-zero extinction right
beyond the boundary) while ruling out pathological cases. We also
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Fig. 7. Validation of attributes for an intermediate frame (Ring Fire
(Thin)). Errors for colors, widths, and lengths are relative errors. For orien-
tation, we show cosine similarity.

use the notation 𝜎 (𝑥 ;𝑥0) to imply the extinction function having a
vacuum-medium boundary at 𝑥 = 𝑥0.

Remark 1. Definition 3 allows 𝜎 (𝑥 ;𝑥0) to be discontinuous and
have a step edge at 𝑥 = 𝑥0; while lim𝑥 ′↑𝑥0

𝜎 (𝑥 ′) = 0, lim𝑥 ′↓𝑥0
𝜎 (𝑥 ′)

can be either 0 or some non-zero positive value (due to the step edge).
In addition, it is possible that 𝑘1 and 𝑘2 are both negative if beyond
the step edge the extinction is decreasing.

Definition 4. For a reasonably mild extinction function 𝜎 (𝑥 ;𝑥0),
we define its transmittance 𝑇𝜎 (𝑥 ;𝑥0) as

𝑇𝜎 (𝑥 ;𝑥0) = exp

(
−

∫ 𝑥

0

𝜎 (𝑥 ′;𝑥0)𝑑𝑥 ′
)
= exp

(
−

∫ 𝑥

𝑥0

𝜎 (𝑥 ′;𝑥0)𝑑𝑥 ′
)
.

(33)

For 𝑥 < 𝑥0, 𝑇𝜎 (𝑥 ;𝑥0) = 1. We are using the subscript to 𝑇 to indicate
the associated extinction function. Note that since 𝜎 (𝑥) ≥ 0, we can
easily see that 𝑇𝜎 (𝑥 ;𝑥0) is a non-increasing function (for 𝑥 ∈ R ̸−).

Definition 5. For a reasonably mild extinction function 𝜎 (𝑥 ;𝑥0),
we define its free path distribution (a probability density function) 𝑝fp𝜎
as

𝑝
fp
𝜎 (𝑥 ;𝑥0) := 𝜎 (𝑥 ;𝑥0)𝑇𝜎 (𝑥 ;𝑥0). (34)
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Fig. 8. Validation of attributes for an intermediate frame (Dense
Static Medium). Errors for colors, widths, and lengths are relative errors.
For orientation, we show cosine similarity.

Again, we are using the subscript to indicate the associated extinction
function.

Definition 6. Let𝛾𝑓 > 0. We say that a function 𝑓 (𝑥) is reasonably
smooth at [𝑥0, 𝑥0 + 𝛾𝑓 ] if and only if 𝑓 (𝑥) is bounded in the following
Lipschitz sense as

𝑓𝑥0
+ 𝑘3 (𝑥 − 𝑥0) ≤ 𝑓 (𝑥) ≤ 𝑓𝑥0

+ 𝑘4 (𝑥 − 𝑥0) (35)

for 𝑥0 ≤ 𝑥 ≤ 𝑥0 + 𝛾𝑓 , where 𝑓𝑥0
= 𝑓 (𝑥0).

Theorem 1. Let 𝜎 (𝑥 ;𝑥0) be a reasonably mild extinction function
(Definitions 2 and 3). Let 𝜎𝑎 (𝑥 ;𝑥0) = 𝑎𝜎 (𝑥 ;𝑥0) (note that 𝜎𝑎 (𝑥 ;𝑥0) is
also a reasonably mild extinction function with a vacuum-medium
boundary at 𝑥 = 𝑥0).

Let a function 𝑓 (𝑥) ∈ 𝐿1 be bounded (i.e., 0 < ∃𝑀𝑓 < ∞ such that
|𝑓 (𝑥) | ≤ 𝑀𝑓 ), absolutely integrable (i.e., 0 < ∃𝑀∫

| 𝑓 | < ∞, such that∫ ∞
−∞ |𝑓 (𝑥) |𝑑𝑥 < 𝑀∫

| 𝑓 | ), and reasonably smooth at [𝑥0, 𝑥0 + 𝛾𝑓 ] for
some 𝛾𝑓 > 0 (Definition 6).

Then,

lim

𝑎→∞

∫ ∞

0

𝑝
fp
𝜎𝑎 (𝑥 ;𝑥0) 𝑓 (𝑥)𝑑𝑥 = 𝑓 (𝑥0) . (36)
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Fig. 9. Validation of attributes for an intermediate frame (Surface
Only). Errors for colors, widths, and lengths are relative errors. For orienta-
tion, we show cosine similarity.

Remark 2. In the sense of Theorem 1, we say

lim

𝑎→∞
𝑝
fp
𝜎𝑎 (𝑥 ;𝑥0) = 𝛿 (𝑥, 𝑥0). (37)

Remark 3. For cases where 𝜎 (𝑥 ;𝑥0) is Lebesgue integrable but
not Riemann integrable, if there exists �̃� (𝑥 ;𝑥0) such that �̃� (𝑥 ;𝑥0) =
𝜎 (𝑥 ;𝑥0) except for 0 measure discontinuities and �̃� (𝑥 ;𝑥0) is right-
continuous for (𝑥0, 𝑥0 + 𝛾𝜎 ] (i.e., �̃� (𝑥 ;𝑥0) is a continuous version of
𝜎 (𝑥 ;𝑥0) in (𝑥0, 𝑥0 + 𝛾𝜎 ]), we may still apply the above theorem for
�̃� (𝑥 ;𝑥0), provided that other conditions imposed by the theorem on
�̃� (𝑥 ;𝑥0) hold.

Proof. Let 𝛾 = min(𝛾𝜎 , 𝛾𝑓 ). Note that 𝛾 > 0. We take 𝜀 as a

function of 𝑎 such that 0 < 𝜀 (𝑎) ≤ 𝛾 . To simplify notation, we write

𝜀𝑎 instead of 𝜀 (𝑎). We split the integral (36) as

lim

𝑎→∞

∫ ∞

0

𝑝
fp

𝜎𝑎 (𝑥 ;𝑥0) 𝑓 (𝑥)𝑑𝑥

= lim

𝑎→∞

∫ 𝑥0

0

𝑝
fp

𝜎𝑎 (𝑥 ;𝑥0) 𝑓 (𝑥)𝑑𝑥 + lim

𝑎→∞

∫ 𝑥0+𝜀𝑎

𝑥0

𝑝
fp

𝜎𝑎 (𝑥 ;𝑥0) 𝑓 (𝑥)𝑑𝑥

+ lim

𝑎→∞

∫ ∞

𝑥0+𝜀𝑎
𝑝
fp

𝜎𝑎 (𝑥 ;𝑥0) 𝑓 (𝑥)𝑑𝑥 . (38)

The first term of (38) is clearly 0. The ideas behind splitting the

integral into these three terms are that 1) as 𝑎 is cranked up, the free

co
lo

r
w

id
th

le
ng

th
or

ie
nt

at
io

n

transferred error

cos. similarity

validation exemplar

Fig. 10. Validation of attributes for an intermediate frame (Wood
and Fire). Errors for colors, widths, and lengths are relative errors. For
orientation, we show cosine similarity.

path distribution will more condense into the region [𝑥0, 𝑥0 + 𝜀𝑎] of
the middle term, and that 2) the last term will diminish if 𝜀 is driven

to 0 in an appropriate speed (which cannot be too fast, otherwise

the free path distribution will not be dominant in the middle term;

the detailed condition will be clear later on).

For the last term of (38), we name it 𝑉 and define

𝑉𝑎 (𝜀𝑎 ;𝑥0) :=

∫ ∞

𝑥0+𝜀𝑎
𝑝
fp

𝜎𝑎 (𝑥 ;𝑥0) 𝑓 (𝑥)𝑑𝑥, (39)

so

𝑉 = lim

𝑎→∞
𝑉𝑎 (𝜀𝑎 ;𝑥0). (40)

For any 𝑥 satisfying 𝑥0 ≤ 𝑥 ≤ 𝑥0 + 𝜀𝑎 ≤ 𝑥0 + 𝛾 , we have

0 ≤ 𝑇𝜎𝑎 (𝑥 ;𝑥0) ≤ exp

(
−

∫ 𝑥

𝑥0

𝑎(𝜎𝑥0
+ 𝑘1 (𝜀𝑎) (𝑥 ′ − 𝑥0))𝑑𝑥 ′

)
︸                                                                   ︷︷                                                                   ︸

(33),(32)

= exp

(
−𝑎(𝜎𝑥0

(𝑥 − 𝑥0) +
𝑘1 (𝜀𝑎)

2

(𝑥 − 𝑥0)2)
)
. (41)
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Fig. 11. Validation of attributes for an intermediate frame (Colliding
Smokes). Errors for colors, widths, and lengths are relative errors. For
orientation, we show cosine similarity.

Because 𝑇𝜎𝑎 (𝑥 ;𝑥0) is a non-increasing function (for 𝑥 ∈ R ̸−), we
can bound 𝑇𝜎𝑎 (𝑥 ;𝑥0) for 𝑥 ≥ 𝑥0 + 𝜀𝑎 by setting 𝑥 to 𝑥0 + 𝜀𝑎 as

0 ≤ 𝑇𝜎𝑎 (𝑥 ;𝑥0) ≤ exp

(
−𝑎(𝜎𝑥0

𝜀𝑎 +
𝑘1 (𝜀𝑎)

2

𝜀2

𝑎)
)
. (42)

Combined with

0 ≤ 𝜎𝑎 (𝑥 ;𝑥0) ≤ 𝑎𝑀𝜎 , (43)

we have

0 ≤ 𝑝
fp

𝜎𝑎 (𝑥 ;𝑥0) ≤ 𝑎𝑀𝜎 exp

(
−𝑎(𝜎𝑥0

𝜀𝑎 +
𝑘1 (𝜀𝑎)

2

𝜀2

𝑎)
)

(44)

for 𝑥 ≥ 𝑥0 + 𝜀𝑎 .
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Fig. 12. Validation of attributes for an intermediate frame (Laminar
to Turbulent). Errors for colors, widths, and lengths are relative errors. For
orientation, we show cosine similarity.

So, we have

|𝑉𝑎 (𝜀𝑎 ;𝑥0) | =
����∫ ∞

𝑥0+𝜀𝑎
𝑝
fp

𝜎𝑎 (𝑥 ;𝑥0) 𝑓 (𝑥)𝑑𝑥
����

≤
∫ ∞

𝑥0+𝜀𝑎
|𝑝fp𝜎𝑎 (𝑥 ;𝑥0) | |𝑓 (𝑥) |𝑑𝑥 =

∫ ∞

𝑥0+𝜀𝑎
𝑝
fp

𝜎𝑎 (𝑥 ;𝑥0) |𝑓 (𝑥) |𝑑𝑥

≤
∫ ∞

𝑥0+𝜀𝑎
𝑎𝑀𝜎 exp

(
−𝑎(𝜎𝑥0

𝜀𝑎 +
𝑘1 (𝜀𝑎)

2

𝜀2

𝑎)
)
|𝑓 (𝑥) |𝑑𝑥

= 𝑎𝑀𝜎 exp

(
−𝑎(𝜎𝑥0

𝜀𝑎 +
𝑘1 (𝜀𝑎)

2

𝜀2

𝑎)
) ∫ ∞

𝑥0+𝜀𝑎
|𝑓 (𝑥) |𝑑𝑥

≤ 𝑎𝑀𝜎 exp

(
−𝑎(𝜎𝑥0

𝜀𝑎 +
𝑘1 (𝜀𝑎)

2

𝜀2

𝑎)
)
𝑀∫
| 𝑓 | . (45)

Hence,

lim

𝑎→∞
|𝑉𝑎 (𝜀𝑎 ;𝑥0) | ≤ lim

𝑎→∞
𝑎𝑀𝜎 exp

(
−𝑎(𝜎𝑥0

𝜀𝑎 +
𝑘1 (𝜀𝑎)

2

𝜀2

𝑎)
)
𝑀∫
| 𝑓 | .

(46)

If 𝑎 exp

(
−𝑎(𝜎𝑥0

𝜀𝑎 + 𝑘1 (𝜀𝑎 )
2

𝜀2

𝑎)
)
→ 0 as 𝑎 → ∞, then we have

lim𝑎→∞ |𝑉𝑎 (𝜀𝑎 ;𝑥0) | = 0, so 𝑉 (𝜀𝑎) = 0 and the last term of (38)

diminishes.
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Fig. 13. Validation of attributes for an intermediate frame (Foggy
Forest). Errors for colors, widths, and lengths are relative errors. For orien-
tation, we show cosine similarity.

Let us estimate the speed required for 𝜀𝑎 . From Lemma 1, we have

lim𝑎→∞ 𝑎 exp(−𝑐𝑎𝑠 ) = 0 if 𝑠 > 0 and 𝑐 > 0. Hence, if
∃𝑠 > 0 and

∃𝑐 > 0 such that 𝑎(𝜎𝑥0
𝜀𝑎 + 𝑘1 (𝜀𝑎 )

2
𝜀2

𝑎) ≥ 𝑐𝑎𝑠 , we obtain the desired

convergence. In fact, we can arbitrary pick a parameter 𝛿 from (0, 1

2
).

Then, for the case of 𝜎𝑥0
> 0, we can take 𝜀𝑎 = 𝑎−1+𝛿

, which gives

lim𝑎→∞ 𝜀𝑎 = 0, and

𝑎

(
𝜎𝑥0

𝜀𝑎 +
𝑘1 (𝜀𝑎)

2

𝜀2

𝑎

)
= 𝜎𝑥0

𝑎𝛿 + 𝑘1 (𝜀𝑎)
2

𝑎−1+2𝛿︸ ︷︷ ︸
→0 as 𝑎→∞

. (47)

On the other hand, if 𝜎𝑥0
= 0, condition (32) requires 𝑘1 (𝜀𝑎) > 0.

For this case we can take 𝜀𝑎 = 𝑎−
1

2
+𝛿
, which gives lim𝑎→∞ 𝜀𝑎 = 0

and

𝑎

(
𝜎𝑥0

𝜀𝑎 +
𝑘1 (𝜀𝑎)

2

𝜀2

𝑎

)
=
𝑘1 (𝜀𝑎)

2

𝑎2𝛿 . (48)

Thus, 𝑎 exp

(
−𝑎(𝜎𝑥0

𝜀𝑎 + 𝑘1 (𝜀𝑎 )
2

𝜀2

𝑎)
)
→ 0 as 𝑎 → ∞, and the last

term of (38) diminishes. Later on, we will find that the same choices

of 𝜀𝑎 work for the computation of the middle term of (38).

Next, we compute the middle term of (38). Again, we consider

two cases: i) 𝜎𝑥0
> 0 and ii) 𝜎𝑥0

= 0. For i), we can bound 𝜎 (𝑥 ;𝑥0) as
0 < 𝜎𝑚 (𝜀𝑎) ≤ 𝜎 (𝑥 ;𝑥0) ≤ 𝜎𝑀 (𝜀𝑎) < ∞, (49)
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Fig. 14. Validation of attributes for an intermediate frame (Fire). Errors
for colors, widths, and lengths are relative errors. For orientation, we show
cosine similarity.

for𝑥0 ≤ 𝑥 ≤ 𝑥0+𝜀𝑎 ≤ 𝑥0+𝛾 , with 𝑙𝑖𝑚𝜀𝑎↓0𝜎𝑚 (𝜀𝑎) = 𝑙𝑖𝑚𝜀𝑎↓0𝜎𝑀 (𝜀𝑎) =
𝜎 (𝑥0;𝑥0) = 𝜎𝑥0

. Hence, for 𝑥0 ≤ 𝑥 ≤ 𝑥0 + 𝜀𝑎 ,

0 < 𝑎𝜎𝑚 (𝜀𝑎) ≤ 𝜎𝑎 (𝑥 ;𝑥0) ≤ 𝑎𝜎𝑀 (𝜀𝑎) < ∞, (50)

and

exp(−𝑎𝜎𝑀 (𝜀𝑎) (𝑥 − 𝑥0)) ≤ 𝑇𝜎𝑎 (𝑥 ;𝑥0) ≤ exp(−𝑎𝜎𝑚 (𝜀𝑎) (𝑥 − 𝑥0)),
(51)

so

𝑝
fp

𝜎𝑎 (𝑥 ;𝑥0, 𝜎𝑚 (𝜀𝑎), 𝜎𝑀 (𝜀𝑎)) ≤ 𝑝
fp

𝜎𝑎 (𝑥 ;𝑥0) ≤ 𝑝
fp

𝜎𝑎 (𝑥 ;𝑥0, 𝜎𝑀 (𝜀𝑎), 𝜎𝑚 (𝜀𝑎)),
(52)

where

𝑝
fp

𝜎𝑎 (𝑥 ;𝑥0, 𝑠, 𝑡) := 𝑎𝑠 exp(−𝑎𝑡 (𝑥 − 𝑥0)) =
𝑠

𝑡

𝑑

𝑑𝑥
(1 − exp(−𝑎𝑡 (𝑥 − 𝑥0))) .

(53)

Recall that 𝑓 (𝑥) is bounded as

𝑓𝑥0
+ 𝑘3 (𝑥 − 𝑥0) ≤ 𝑓 (𝑥) ≤ 𝑓𝑥0

+ 𝑘4 (𝑥 − 𝑥0), (54)
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according to (6). Then,∫ 𝑥0+𝜀𝑎

𝑥0

𝑝
fp

𝜎𝑎 (𝑥 ;𝑥0) 𝑓 (𝑥)𝑑𝑥 ≥ 𝑉𝑎 (𝜀𝑎, 𝜎𝑚 (𝜀𝑎), 𝜎𝑀 (𝜀𝑎), 𝑓𝑥0
, 𝑘3;𝑥0)

:=

∫ 𝑥0+𝜀𝑎

𝑥0

𝑝
fp

𝜎𝑎 (𝑥 ;𝑥0, 𝜎𝑚 (𝜀𝑎), 𝜎𝑀 (𝜀𝑎)) (𝑓𝑥0
+ 𝑘3 (𝑥 − 𝑥0))𝑑𝑥

=

[
𝑃
fp

𝜎𝑎 (𝑥 ;𝑥0, 𝜎𝑚 (𝜀𝑎), 𝜎𝑀 (𝜀𝑎)) (𝑓𝑥0
+ 𝑘3 (𝑥 − 𝑥0))

]𝑥0+𝜀𝑎
𝑥0

−
∫ 𝑥0+𝜀𝑎

𝑥0

𝑃
fp

𝜎𝑎 (𝑥 ;𝑥0, 𝜎𝑚 (𝜀𝑎), 𝜎𝑀 (𝜀𝑎))
𝑑

𝑑𝑥
(𝑓𝑥0
+ 𝑘3 (𝑥 − 𝑥0))𝑑𝑥,

(55)

where 𝑃
fp

𝜎𝑎 (𝑥 ;𝑥0, 𝑠, 𝑡) = 𝑠
𝑡 (1 − exp(−𝑎𝑡 (𝑥 − 𝑥0))). Continuing the

computation, we have

𝑉𝑎 (𝜀𝑎, 𝜎𝑚 (𝜀𝑎), 𝜎𝑀 (𝜀𝑎), 𝑓𝑥0
, 𝑘3;𝑥0)

= 𝑃
fp

𝜎𝑎 (𝑥0 + 𝜀𝑎 ;𝑥0, 𝜎𝑚 (𝜀𝑎), 𝜎𝑀 (𝜀𝑎)) (𝑓𝑥0
+ 𝑘3𝜀𝑎)

− 𝑃 fp𝜎𝑎 (𝑥0;𝑥0, 𝜎𝑚 (𝜀𝑎), 𝜎𝑀 (𝜀𝑎))︸                              ︷︷                              ︸
=0

𝑓𝑥0

−
∫ 𝑥0+𝜀𝑎

𝑥0

𝑘3𝜎𝑚 (𝜀𝑎)
𝜎𝑀 (𝜀𝑎)

(1 − exp(−𝑎𝜎𝑀 (𝜀𝑎) (𝑥 − 𝑥0)))𝑑𝑥

= 𝑃
fp

𝜎𝑎 (𝑥0 + 𝜀𝑎 ;𝜎𝑚 (𝜀𝑎), 𝜎𝑀 (𝜀𝑎)) (𝑓𝑥0
+ 𝑘3𝜀𝑎)

− 𝑘3𝜎𝑚 (𝜀𝑎)
𝜎𝑀 (𝜀𝑎)

[
𝑥 + exp(−𝑎𝜎𝑀 (𝜀𝑎) (𝑥 − 𝑥0))

𝑎𝜎𝑀 (𝜀𝑎)

]𝑥0+𝜀𝑎

𝑥0

=
𝜎𝑚 (𝜀𝑎)
𝜎𝑀 (𝜀𝑎)

(1 − exp(−𝑎𝜎𝑀 (𝜀𝑎)𝜀𝑎)) (𝑓𝑥0
+ 𝑘3𝜀𝑎)

− 𝑘3𝜎𝑚 (𝜀𝑎)
𝜎𝑀 (𝜀𝑎)

𝜀𝑎 +
𝑘3𝜎𝑚 (𝜀𝑎)
𝑎(𝜎𝑀 (𝜀𝑎))2

(1 − exp(−𝑎𝜎𝑀 (𝜀𝑎)𝜀𝑎)) . (56)

If we take 𝛿 from (0, 1

2
) (which aligns with the condition required

for the case when computing the last term of (38)), and set 𝜀𝑎 =

𝑎−1+𝛿
, then, lim𝑎→∞ 𝜀𝑎 = 0 and lim𝑎→∞ 𝑎𝜀𝑎 = lim𝑎→∞ 𝑎𝛿 = ∞,

thus lim𝑎→∞ (1 − exp(−𝑎𝜎𝑀 (𝜀𝑎)𝜀𝑎)) = 1.

Hence, in terms of 𝑉𝑎 (𝜀𝑎, 𝜎𝑚 (𝜀𝑎), 𝜎𝑀 (𝜀𝑎), 𝑓𝑥0
, 𝑘3;𝑥0), we have

lim

𝑎→∞
𝑉𝑎 (𝜀𝑎, 𝜎𝑚 (𝜀𝑎), 𝜎𝑀 (𝜀𝑎), 𝑓𝑥0

, 𝑘3;𝑥0)

= lim

𝑎→∞
𝜎𝑚 (𝜀𝑎)
𝜎𝑀 (𝜀𝑎)︸   ︷︷   ︸
→1

(1 − exp(−𝑎𝜎𝑀 (𝜀𝑎)𝜀𝑎))︸                         ︷︷                         ︸
→1

(𝑓𝑥0
+ 𝑘3𝜀𝑎)︸        ︷︷        ︸
→𝑓𝑥

0

− lim

𝑎→∞
𝑘3𝜎𝑚 (𝜀𝑎)
𝜎𝑀 (𝜀𝑎)

𝜀𝑎︸         ︷︷         ︸
→0

+ lim

𝑎→∞
𝑘3𝜎𝑚 (𝜀𝑎)
𝑎(𝜎𝑀 (𝜀𝑎))2︸         ︷︷         ︸

→0

(1 − exp(−𝑎𝜎𝑀 (𝜀𝑎)𝜀𝑎))︸                         ︷︷                         ︸
→1

= 𝑓𝑥0
. (57)

Likewise,∫ 𝑥0+𝜀𝑎

𝑥0

𝑝
fp

𝜎𝑎 (𝑥 ;𝑥0) 𝑓 (𝑥)𝑑𝑥 ≤ 𝑉𝑎 (𝜀𝑎, 𝜎𝑀 (𝜀𝑎), 𝜎𝑚 (𝜀𝑎), 𝑓𝑥0
, 𝑘4;𝑥0) .

(58)

Taking the limit of 𝑎 →∞, we have

lim

𝑎→∞
𝑉𝑎 (𝜀𝑎, 𝜎𝑀 (𝜀𝑎), 𝜎𝑚 (𝜀𝑎), 𝑓𝑥0

, 𝑘4;𝑥0) = 𝑓𝑥0
. (59)

In summary, we have

lim

𝑎→∞

∫ 𝑥0+𝜀𝑎

𝑥0

𝑝
fp

𝜎𝑎 (𝑥 ;𝑥0) 𝑓 (𝑥)𝑑𝑥 = 𝑓𝑥0
. (60)

For case ii), we can bound 𝜎 (𝑥 ;𝑥0) as

𝑘1 (𝜀𝑎) (𝑥 − 𝑥0) ≤ 𝜎 (𝑥 ;𝑥0) ≤ 𝑘2 (𝜀𝑎) (𝑥 − 𝑥0), (61)

with 0 < 𝑘1 (𝜀𝑎) ≤ 𝑘2 (𝜀𝑎). Then,

𝑎𝑘1 (𝜀𝑎) (𝑥 − 𝑥0) ≤ 𝜎𝑎 (𝑥 ;𝑥0) ≤ 𝑎𝑘2 (𝜀𝑎) (𝑥 − 𝑥0), (62)

and

exp

(
−𝑎𝑘2 (𝜀𝑎)

2

(𝑥 − 𝑥0)2
)
≤ 𝑇𝑎 (𝑥 ;𝑥0) ≤ exp

(
−𝑎𝑘1 (𝜀𝑎)

2

(𝑥 − 𝑥0)2
)
,

(63)

so

𝑝
fp

𝜎𝑎 (𝑥 ;𝑥0, 𝑘1 (𝜀𝑎), 𝑘2 (𝜀𝑎)) ≤ 𝑝
fp

𝜎𝑎 (𝑥 ;𝑥0) ≤ 𝑝
fp

𝜎𝑎 (𝑥 ;𝑥0, 𝑘2 (𝜀𝑎), 𝑘1 (𝜀𝑎)),
(64)

where

𝑝
fp

𝜎𝑎 (𝑥 ;𝑥0, 𝑘1 (𝜀𝑎), 𝑘2 (𝜀𝑎))

= 𝑎𝑘1 (𝜀𝑎) (𝑥 − 𝑥0) exp

(
−𝑎𝑘2 (𝜀𝑎)

2

(𝑥 − 𝑥0)2
)

=
𝑘1 (𝜀𝑎)
𝑘2 (𝜀𝑎)

𝑑

𝑑𝑥

(
1 − exp

(
−𝑎𝑘2 (𝜀𝑎)

2

(𝑥 − 𝑥0)2
))

. (65)

Again, recall that 𝑓 (𝑥) is bounded as

𝑓𝑥0
+ 𝑘3 (𝑥 − 𝑥0) ≤ 𝑓 (𝑥) ≤ 𝑓𝑥0

+ 𝑘4 (𝑥 − 𝑥0), (66)

according to (6). So,∫ 𝑥0+𝜀𝑎

𝑥0

𝑝
fp

𝜎𝑎 (𝑥 ;𝑥0) 𝑓 (𝑥)𝑑𝑥 ≥ 𝑉𝑎 (𝜀𝑎, 𝑘1 (𝜀𝑎), 𝑘2 (𝜀𝑎), 𝑓𝑥0
, 𝑘3;𝑥0)

:=

∫ 𝑥0+𝜀𝑎

𝑥0

𝑝
fp

𝜎𝑎 (𝑥 ;𝑥0, 𝑘1 (𝜀𝑎), 𝑘2 (𝜀𝑎)) (𝑓𝑥0
+ 𝑘3 (𝑥 − 𝑥0))𝑑𝑥

=

[
𝑃
fp

𝜎𝑎 (𝑥 ;𝑥0, 𝑘1 (𝜀𝑎), 𝑘2 (𝜀𝑎)) (𝑓𝑥0
+ 𝑘3 (𝑥 − 𝑥0))

]𝑥0+𝜀𝑎
𝑥0

−
∫ 𝑥0+𝜀𝑎

𝑥0

𝑃
fp

𝜎𝑎 (𝑥 ;𝑥0, 𝑘1 (𝜀𝑎), 𝑘2 (𝜀𝑎))
𝑑

𝑑𝑥
(𝑓𝑥0
+ 𝑘3 (𝑥 − 𝑥0))𝑑𝑥,

(67)

where 𝑃
fp

𝜎𝑎 (𝑥 ;𝑥0, 𝑠, 𝑡) = 𝑠
𝑡 (1 − exp(−𝑎𝑡

2
(𝑥 − 𝑥0)2)).

Note that ∫ 𝑥

0

exp(−𝑡2)𝑑𝑡 =
√
𝜋

2

erf(𝑥). (68)

For

∫ 𝑥

0
exp(−𝑠𝑡2)𝑑𝑡 , with 𝑠 > 0, using the change of variable 𝑇 =√

𝑠𝑡 , we have∫ 𝑥

0

exp(−𝑠𝑡2)𝑑𝑡 =
∫ √

𝑠𝑥

0

exp(−𝑇 2) 1

√
𝑠
𝑑𝑇 =

√︂
𝜋

4𝑠
erf(
√
𝑠𝑥) . (69)
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So, ∫ 𝑥0+𝜀𝑎

𝑥0

𝑃
fp

𝜎𝑎 (𝑥 ;𝑥0, 𝑘1 (𝜀𝑎), 𝑘2 (𝜀𝑎))
𝑑

𝑑𝑥
(𝑓𝑥0
+ 𝑘3 (𝑥 − 𝑥0))𝑑𝑥

=

∫ 𝜀𝑎

0

𝑘1 (𝜀𝑎)
𝑘2 (𝜀𝑎)

𝑘3𝑑𝑥 −
∫ 𝜀𝑎

0

𝑘1 (𝜀𝑎)
𝑘2 (𝜀𝑎)

𝑘3 exp

(
−𝑎𝑘2 (𝜀𝑎)

2

𝑥2

)
𝑑𝑥

=
𝑘1 (𝜀𝑎)𝑘3𝜀𝑎

𝑘2 (𝜀𝑎)
− 𝑘1 (𝜀𝑎)𝑘3

𝑘2 (𝜀𝑎)

√︂
𝜋

2𝑎𝑘2 (𝜀𝑎)
erf

(√︂
𝑎𝑘2 (𝜀𝑎)

2

𝜀𝑎

)
, (70)

and

𝑉𝑎 (𝜀𝑎, 𝑘1 (𝜀𝑎), 𝑘2 (𝜀𝑎), 𝑓𝑥0
, 𝑘3)

=
𝑘1 (𝜀𝑎)
𝑘2 (𝜀𝑎)

(
1 − exp

(
−𝑎𝑘2 (𝜀𝑎)

2

𝜀2

𝑎

))
(𝑓𝑥0
+ 𝑘3𝜀𝑎) −

𝑘1 (𝜀𝑎)𝑘3𝜀𝑎

𝑘2 (𝜀𝑎)

+ 𝑘1 (𝜀𝑎)𝑘3

𝑘2 (𝜀𝑎)

√︂
𝜋

2𝑎𝑘2 (𝜀𝑎)
erf

(√︂
𝑎𝑘2 (𝜀𝑎)

2

𝜀𝑎

)
. (71)

If we take 𝛿 from (0, 1

2
) (again, which aligns with the condition

required for the case when computing the last term of (38)), and set

𝜀𝑎 = 𝑎−
1

2
+𝛿
, then, lim𝑎→∞ 𝜀𝑎 = 0 and lim𝑎→∞ 𝑎𝜀2

𝑎 = lim𝑎→∞ 𝑎2𝛿 =

∞, thus lim𝑎→∞ (1 − exp(−𝑎𝑘2 (𝜀𝑎 )
2

𝜀2

𝑎)) = 1. So, we have

lim

𝑎→∞
𝑉𝑎 (𝜀𝑎, 𝑘1 (𝜀𝑎), 𝑘2 (𝜀𝑎), 𝑓𝑥0

, 𝑘3;𝑥0)

= lim

𝑎→∞
𝑘1 (𝜀𝑎)
𝑘2 (𝜀𝑎)︸  ︷︷  ︸
→1

(
1 − exp

(
−𝑎𝑘2 (𝜀𝑎)

2

𝜀2

𝑎

))
︸                          ︷︷                          ︸

→1

(𝑓𝑥0
+ 𝑘3𝜀𝑎)︸        ︷︷        ︸
→𝑓𝑥

0

− lim

𝑎→∞
𝑘1 (𝜀𝑎)𝑘3𝜀𝑎

𝑘2 (𝜀𝑎)︸        ︷︷        ︸
→0

+ lim

𝑎→∞
𝑘1 (𝜀𝑎)𝑘3

𝑘2 (𝜀𝑎)︸     ︷︷     ︸
→𝑘3

√︂
𝜋

2𝑎𝑘2 (𝜀𝑎)︸        ︷︷        ︸
→0

erf

(√︂
𝑎𝑘2 (𝜀𝑎)

2

𝜀𝑎

)
︸                 ︷︷                 ︸

−1≤ ≤1

= 𝑓𝑥0
. (72)

Likewise,∫ 𝑥0+𝜀𝑎

𝑥0

𝑝
fp

𝜎𝑎 (𝑥 ;𝑥0) 𝑓 (𝑥)𝑑𝑥 ≤ 𝑉𝑎 (𝜀𝑎, 𝑘2 (𝜀𝑎), 𝑘1 (𝜀𝑎), 𝑓𝑥0
, 𝑘4;𝑥0),

(73)

and the limit of the right hand side is

lim

𝑎→∞
𝑉𝑎 (𝜀𝑎, 𝑘2 (𝜀𝑎), 𝑘1 (𝜀𝑎), 𝑓𝑥0

, 𝑘4;𝑥0) = 𝑓𝑥0
. (74)

Hence,

lim

𝑎→∞

∫ 𝑥0+𝜀𝑎

𝑥0

𝑝
fp

𝜎𝑎 (𝑥 ;𝑥0) 𝑓 (𝑥)𝑑𝑥 = 𝑓𝑥0
. (75)

□

Lemma 1. For ∀𝑠 > 0 and ∀𝑐 > 0

lim

𝑎→∞
𝑎 exp(−𝑐𝑎𝑠 ) = 0. (76)

Proof. Using the L’Hôpital’s rule, we have

lim

𝑎→∞
𝑎

exp(𝑐𝑎𝑠 )
L’Hôpital’s rule

= lim

𝑎→∞
1

𝑐𝑠𝑎𝑠−1
exp(𝑐𝑎𝑠 )

. (77)

If 𝑠 ≥ 1, this limit is clearly 0, and if 0 < 𝑠 < 1, we further have

lim

𝑎→∞
1

𝑐𝑠𝑎𝑠−1
exp(𝑐𝑎𝑠 )

= lim

𝑎→∞
𝑎1−𝑠

𝑐𝑠 exp(𝑐𝑎𝑠 )
L’Hôpital’s rule

= lim

𝑎→∞
(1 − 𝑠)𝑎−𝑠

𝑐2𝑠2𝑎𝑠−1
exp(𝑐𝑎𝑠 )

= lim

𝑎→∞
(1 − 𝑠)𝑎1−2𝑠

𝑐2𝑠2
exp(𝑐𝑎𝑠 )

, (78)

which is 0 if 𝑠 ≥ 1

2
. For smaller and smaller 𝑠 , we have

lim

𝑎→∞
(1 − 𝑠)𝑎1−2𝑠

𝑎2𝑠2
exp(𝑐𝑎𝑠 )

L’Hôpital’s rule

= lim

𝑎→∞
(1 − 𝑠) (1 − 2𝑠)𝑎−2𝑠

𝑐3𝑠3𝑎𝑠−1
exp(𝑐𝑎𝑠 )

= lim

𝑎→∞
(1 − 𝑠) (1 − 2𝑠)𝑎1−3𝑠

𝑐3𝑠3
exp(𝑐𝑎𝑠 )

= · · · = lim

𝑎→∞

𝑎1−𝑛𝑠 ∏𝑛−1

𝑘=1
(1 − 𝑘𝑠)

𝑐𝑛𝑠𝑛 exp(𝑐𝑎𝑠 ) , (79)

which is 0 for 𝑠 ≥ 1

𝑛 . So, for an arbitrary 𝑠 > 0, if we take 𝑛 = ⌈ 1𝑠 ⌉,
then

lim

𝑎→∞
𝑎 exp(−𝑐𝑎𝑠 ) = lim

𝑎→∞

𝑎1−𝑛𝑠 ∏𝑛−1

𝑘=1
(1 − 𝑘𝑠)

𝑐𝑛𝑠𝑛 exp(𝑐𝑎𝑠 ) = 0. (80)

□

References
Jakub Fišer, Ondřej Jamriška, Michal Lukáč, Eli Shechtman, Paul Asente, Jingwan Lu,

and Daniel Sýkora. 2016. StyLit: Illumination-Guided Example-Based Stylization

of 3D Renderings. ACM Transactions on Graphics 35, 4 (Proc. of SIGGRAPH 2016),

Article 92 (jul 2016), 11 pages. doi:10.1145/2897824.2925948

Golnaz Ghiasi, Honglak Lee, Manjunath Kudlur, Vincent Dumoulin, and Jonathon

Shlens. 2017. Exploring the structure of a real-time, arbitrary neural artistic styliza-

tion network. arXiv:1705.06830 [cs.CV] https://arxiv.org/abs/1705.06830

Ron Goldman. 2005. Curvature formulas for implicit curves and surfaces. Comput.
Aided Geom. Des. 22, 7 (oct 2005), 632–658.

Teng Hu, Ran Yi, Haokun Zhu, Liang Liu, Jinlong Peng, Yabiao Wang, Chengjie Wang,

and Lizhuang Ma. 2023. Stroke-based Neural Painting and Stylization with Dy-

namically Predicted Painting Region. In Proceedings of the 31st ACM International
Conference on Multimedia (Ottawa ON, Canada) (MM ’23). Association for Comput-

ing Machinery, New York, NY, USA, 7470–7480. doi:10.1145/3581783.3611766

Dmytro Kotovenko, Matthias Wright, Arthur Heimbrecht, and Bjorn Ommer. 2021.

Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes . In 2021
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE
Computer Society, Los Alamitos, CA, USA, 12191–12200. doi:10.1109/CVPR46437.

2021.01202

Gongye Liu, Menghan Xia, Yong Zhang, Haoxin Chen, Jinbo Xing, Yibo Wang, Xintao

Wang, Ying Shan, and Yujiu Yang. 2024. StyleCrafter: TamingArtistic VideoDiffusion

with Reference-Augmented Adapter Learning. ACM Trans. Graph. 43, 6, Article 251
(Nov. 2024), 10 pages. doi:10.1145/3687975

Ondřej Texler, David Futschik, Michal kučera, Ondřej jamriška, Šárka Sochorová, Men-

clei Chai, Sergey Tulyakov, and Daniel SÝkora. 2020. Interactive Video Stylization

Using Few-Shot Patch-Based Training. ACM Transactions on Graphics 39, 4 (Proc.
of SIGGRAPH 2020), Article 73 (jul 2020), 11 pages. doi:10.1145/3386569.3392453

Hideki Todo, Kunihiko Kobayashi, Jin Katsuragi, Haruna Shimotahira, Shizuo Kaji, and

Yonghao Yue. 2022. Stroke Transfer: Example-based Synthesis of Animatable Stroke

Styles. In ACM SIGGRAPH 2022 Conference Proceedings (Vancouver, BC, Canada)
(SIGGRAPH ’22). Association for Computing Machinery, New York, NY, USA, Article

54, 10 pages. doi:10.1145/3528233.3530703

Yonghao Yue, Breannan Smith, Christopher Batty, Changxi Zheng, and Eitan Grinspun.

2015. Continuum Foam: A Material Point Method for Shear-Dependent Flows. ACM
Transactions on Graphics 34, 5 (2015), 160:1–20.

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.

https://doi.org/10.1145/2897824.2925948
https://arxiv.org/abs/1705.06830
https://arxiv.org/abs/1705.06830
https://doi.org/10.1145/3581783.3611766
https://doi.org/10.1109/CVPR46437.2021.01202
https://doi.org/10.1109/CVPR46437.2021.01202
https://doi.org/10.1145/3687975
https://doi.org/10.1145/3386569.3392453
https://doi.org/10.1145/3528233.3530703

	1 Motivation for Model for orientation
	2 Curvature for Isosurfaces of a Scalar Field
	3 Computing Distance from Silhouette for Medium
	4 Standardization of Features
	4.1 L, a, b
	4.2 Apparent intensity gradient
	4.3 Apparent curvatures
	4.4 Apparent normal
	4.5 Temperature
	4.6 Apparent relative velocity
	4.7 Transmittance
	4.8 Apparent mean free-path
	4.9 Distance from silhouettes

	5 Basis Fields
	6 Orientation Smoothing
	7 Stroke Rendering
	8 Scene Statistics
	9 Detailed Timing
	10 Comparison to Previous Methods
	11 Importance of Features
	12 Ablation Settings
	13 Performance of Transfer
	14 Proof for Free-Path Distribution Approaching Delta Function
	References

