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Figure 1: Examples of our method. The parameters for rendering clouds are estimated from the real photograph shown in the small inset at
the top left corner of each image. The synthetic cumulonimbus clouds are rendered using the estimated parameters.

Abstract

Clouds play an important role in creating realistic images of out-
door scenes. Many methods have therefore been proposed for dis-
playing realistic clouds. However, the realism of the resulting im-
ages depends on many parameters used to render them and it is
often difficult to adjust those parameters manually. This paper pro-
poses a method for addressing this problem by solving an inverse
rendering problem: given a non-uniform synthetic cloud density
distribution, the parameters for rendering the synthetic clouds are
estimated using photographs of real clouds. The objective func-
tion is defined as the difference between the color histograms of
the photograph and the synthetic image. Our method searches for
the optimal parameters using genetic algorithms. During the search
process, we take into account the multiple scattering of light inside
the clouds. The search process is accelerated by precomputing a set
of intermediate images. After ten to twenty minutes of precomputa-
tion, our method estimates the optimal parameters within a minute.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism; I.3.3 [Computer Graphics]: Picture/Image
Generation;
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1 Introduction

Clouds are important elements when synthesizing images of out-
door scenes to enhance realism. A volumetric representation is of-
ten employed and the intensities of the clouds are computed taking
into account the scattering and absorption of light in order to display
realistic clouds. However, one of the problems is that the quality of
the rendered image depends on many parameters, which need to be
adjusted manually by rendering the clouds repeatedly with different
parameter settings. This is not an easy task since the relationship
between the resulting appearance of the clouds and the parameters
is highly nonlinear. The expensive computational cost for the ren-
dering process makes this more difficult. This paper focuses on
automatic adjustment of the parameters to address this task.

Recently, many real-time methods have been proposed for editing
the parameters used in rendering images [Harris and Lastra 2001;
Bouthors et al. 2008; Zhou et al. 2008]. These methods are fast so-
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lutions to the forward rendering problem: the corresponding output
image is computed in real-time using the given parameters, allow-
ing one to efficiently find the appropriate parameters that produce
a desired image. However, even using these methods, a repetitive
trial-and-error process is still required until satisfactory results are
obtained. Our aim is to remove the manual trial-and-error process
by solving an inverse rendering problem.

One may think that our purpose would be achieved by using im-
age processing techniques such as color transfers between im-
ages [Reinhard et al. 2001] that convert a synthetic image into one
whose appearance is similar to the photograph. However, the color
transfer methods achieve only a superficial conversion. Our exper-
iments showed that these methods cannot produce satisfactory re-
sults unless the parameters are carefully chosen to make the appear-
ance of the synthetic clouds similar to the photograph (see Section
5.1). Furthermore, since color transfer methods are image-based
methods, we cannot change the viewpoint and lighting conditions
such as sunlight directions or colors. The appearance of clouds is
more fundamentally determined by the parameters used to render
them, and it is these parameters that our method determines.

Our method determines the parameters for rendering clouds such
that the appearance of the synthetic clouds is similar to a specified
source image. Our purpose is not to estimate physically correct pa-
rameters but to find the parameters that can produce an image that
is visually similar to the clouds in the input photograph. The pa-
rameters estimated by our method are listed in Table 1. We take
into account both single and multiple scattering of light inside the
clouds in creating the synthetic images. The source image is a pho-
tograph of real clouds. We use a color histogram to measure the
visual difference between the synthetic image and the photograph.
The use of a color histogram is motivated by the fact that it is often
used in image retrieval/indexing applications.

Solving the inverse rendering problem, however, is not trivial be-
cause the intensity of clouds is a highly nonlinear function of the
parameters used to render them. Furthermore, there is seldom a
unique solution to this problem: many different sets of parameters
can produce similar images. We chose genetic algorithms (GAs)
to address this problem because of their two capabilities: 1) they
can find the optimal parameters efficiently even for such a highly
nonlinear problem and 2) they can find a number of candidates for
the optimal parameters during the optimization process. To make
use of these capabilities, our system records a specified number of
high-ranking parameters and displays the corresponding images to
the user. The user then selects one of them as the optimal solution.
Since the computation of the multiple scattering is generally time-
consuming, we accelerate the computation by precomputing a set
of intermediate images and by utilizing a GPU. Using our method,
the user can obtain the appropriate parameters to create realistic
images of clouds by simply specifying a photograph of real clouds.
Once the parameters have been obtained, the user can render the
synthetic clouds with various viewpoints, sunlight directions, and
sunlight colors. Note that our method does not guarantee the real-
ism of images rendered with viewpoints and sunlight directions that
are different from those used to estimate the parameters. However,
our experiments showed that realistic images are generated in most
cases.

One important thing to note is that with our method the op-
timal parameters can be found even if the density distribu-
tion of the clouds is not physically reasonable. In com-
puter graphics, many methods have been proposed for gener-
ating the cloud density distribution, such as a procedural ap-
proach [Ebert et al. 2009; Schpok et al. 2003], a physically-based
simulation [Miyazaki et al. 2002], and an image-based approach
[Dobashi et al. 2010]. These methods can produce realistic looking

Table 1: Parameters to be estimated.
parameter meaning

cin(λ)
color component of light incident on clouds
(λ: wavelength)

Lin intensity of light incident on clouds
Lsky(q, λ) intensity of the sky behind the clouds at pixel q

g asymmetry factor of phase function
σt extinction cross section of cloud particles
β albedo of cloud particles

Lamb constant ambient term
κa(λ) extinction coefficient of atmospheric particles

density distributions but they are not guaranteed to be physically-
valid. This means that physically correct parameters for rendering
clouds do not always provide satisfactory results.

Fig. 1 shows an example of our method. The inset in each image is
the photograph specified by the user. Our method successfully finds
the parameters that can render the synthetic cumulonimbus clouds
with a similar appearance to that in the photograph.

2 Related Work

Many methods have been proposed for rendering participating me-
dia [Stam 1995; Nishita et al. 1996; Jensen and Christensen 1998;
Premoze et al. 2004; Yue et al. 2010]. Although these methods can
create realistic images of clouds, the computational cost is expen-
sive. This makes it time-consuming to adjust the parameters so that
the desired appearance of clouds is produced. In order to address
this problem, real-time rendering methods have been proposed
[Harris and Lastra 2001; Bouthors et al. 2008; Zhou et al. 2008].
However, as we have mentioned previously, these methods only
solve the forward problem.

There have been many research projects that treat different kinds of
inverse rendering problem. In Kawai et al. [1993] and Schoeneman
et al. [1993], methods for solving the inverse problem with respect
to the lighting parameters were proposed. Following these methods,
many methods have been proposed for the inverse lighting problem.
A detailed discussion on this subject can be found in Pellacini et
al. [2007]. Other than the lighting problem, a general solution to
setting parameters was proposed by Marks et al. [1997]. Although
this method is useful for browsing the parameter space to obtain
intuition of the space, it is not designed to solve inverse problems.
More recently, methods for estimating the parameters for rendering
hair [Bonneel et al. 2009], translucent objects [Munoz et al. 2011;
Wang et al. 2008], and haze [Fattal 2008] have been proposed.

We employ GAs for estimating the parameters for render-
ing clouds. GAs have also been used in the field of
computer graphics such as in texture synthesis [Sims 1991],
image based simulation of facial aging [Hubball et al. 2008],
image recognition [Katz and Thrift 1994], estimation of re-
flectance properties [Munoz et al. 2009], and shader simplification
[Sitthi-Amorn et al. 2011].

There have been several research studies on the inverse problem
related to light scattering. Li and Yang [1997] studied inverse ra-
diation problems. Zhang et al. [2005] proposed a method for de-
termining the optical properties of human skin. These methods use
GAs. Kienle et al. [1996] proposed a measurement system for de-
termining the optical properties of biological tissue. In this method,
neural networks are trained using Monte Carlo simulations and then
used to estimate the optical properties from the measured data. In
the field of remote sensing, estimation of the optical properties of
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Figure 2: Overview of our method. The inputs to our system are a photograph of real clouds, volume data of synthetic clouds, the sun
direction, and camera parameters. Our system then estimates the parameters for rendering synthetic clouds so that the color histograms of
the synthetic image and the photograph become the same. The outputs are a set of high-ranking parameters and corresponding synthetic
images.

clouds is one of the active research areas and many methods have
been proposed. Davis and Marshak [2010] have conducted a nice
survey on this topic. However, the goal of these research studies is
to estimate physically correct parameters while ours is to obtain vi-
sually reasonable parameters (potentially non-physical parameters).
Our method is designed to be efficient in achieving our goal.

3 Problem Definition

The inputs to our system are volume data representing the density
distribution of synthetic clouds, and a photograph of real clouds.
The direction of the sunlight and the camera parameters used to
render synthetic clouds also need to be specified by the user. The
user is responsible for preparing the volume data of the synthetic
clouds. It can be generated by, for example, procedural approaches
[Ebert et al. 2009] or fluid simulation [Miyazaki et al. 2002]. Our
method is not to reconstruct the 3D shape of the clouds in the pho-
tograph but to determine the parameters to render synthetic clouds.
A photograph of real clouds can be prepared either by taking a pic-
ture of the sky or by searching images through the internet. The
system called SkyFinder proposed by Tao et al. [2009] might make
it easy to find a photograph of clouds with the desired appearance.
Our system then searches for the optimal parameters that minimize
the following objective function O:

arg min
c

O(Icg(c), Iusr), (1)

where c is a vector consisting of the parameters used for rendering
the synthetic image Icg . Iusr is the photograph specified by the
user. The objective function O measures the visual difference be-
tween Icg and Iusr . We use color histograms to compute the visual
differences. O is defined by:

O =
1

3

∑
λ=R,G,B

nL−1∑
n=0

|hcg(n, λ)− husr(n, λ)|, (2)

where λ is the wavelength sampled at the wavelength correspond-
ing to the RGB color channels, nL is the number of intensity levels,
and hcg and husr represent histograms of Icg and Iusr , respec-
tively. hcg and husr are normalized by dividing them by the num-
ber of pixels. These histograms are computed using only the pixels
corresponding to the clouds. The extraction of the cloud pixels is
described in Section 4.1.

The intensity of clouds in the synthetic image Icg is calculated
based on the rendering equations for the clouds [Nishita et al. 1996;
Cerezo et al. 2005; Zhou et al. 2008]. The intensity of clouds de-
pends on many parameters, such as the intensities of the sunlight

and the skylight, and the optical properties of atmospheric and
cloud particles. In our method, the only light source illuminating
the clouds is the sun. The skylight is not taken into account as
a light source. However, the intensity of light directly reaching the
viewpoint from the sky behind the clouds is taken into account. The
attenuation and scattering of light due to atmospheric particles be-
tween the clouds and the viewpoint are also taken into account. Our
purpose is to find the parameters that can reproduce the appearance
of the clouds in the input photograph. The parameters estimated by
our method are listed in Table 1. We briefly describe these parame-
ters in the following.

cin(λ) and Lin are color and intensity components of the light
incident on the clouds, respectively. These parameters indicate
the sun light reaching the clouds after traveling through the atmo-
sphere. The color cin and intensity Lin are separately estimated.
Lsky(q, λ) is the intensity of the sky behind the clouds at pixel q.
g, σt, and β, are the optical parameters of the cloud particles. g
is a parameter of the Henyey-Greenstein function commonly used
as the phase function of cloud particles. g controls the anisotropy
of the phase function. The extinction cross section σt controls the
degree of attenuation when light travels through the cloud. The in-
tensity of the light is attenuated exponentially and σt determines
the exponential decay. β is the albedo of the cloud particles. Next,
Lamb is a constant ambient term commonly used to compensate the
effect of higher order multiple scattering which is usually truncated
due to the limitation of computation cost. Although clouds con-
sist of particles with different sizes, we assume that the particles
are relatively large compared to the wavelength of the incident light
and therefore their optical properties (g, β, and σt) are independent
of wavelength. We assume the ambient term is also independent
of wavelength. This implies that the color of the ambient light is
equivalent to cin(λ). Finally, κa is the extinction coefficient of at-
mospheric particles. This parameter depends on the wavelength.
Among the parameters in Table 1, cin(λ) and Lsky(q, λ) are esti-
mated using image processing techniques (see Section 4.1). Lin,
g, σt, β and Lamb are estimated using GAs (see Section 4.2). For
GAs, the ranges of g and β are from zero to one but the ranges of
Lin, σt, κa, and Lamb need to be specified by the user.

4 Estimation Method

The minimization problem defined in the previous section is solved
by rendering the clouds repeatedly with various parameter settings
using GAs. To render clouds, we take into account both single
and multiple scattering. The scattering and absorption due to at-
mospheric particles between the clouds and the viewpoint are also
taken into account. We employ the simplest model where the den-
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sity of the atmospheric particles is assumed to be uniform and the
intensity of scattered light due to atmospheric particles is assume to
be constant. Under these assumptions, the intensity of light reach-
ing the viewpoint for a pixel is a blended intensity of the clouds and
the sky behind the clouds.

An overview of our system is illustrated by Fig. 2. Before using
GAs, our system extracts cloud pixels from the input photograph
and estimates the color of the incident light cin(λ) and the inten-
sity of the sky behind the clouds Lsky(q, λ). The color of the in-
cident light is different from that of the sun because the sunlight is
attenuated and scattered by atmospheric particles before reaching
the clouds. The color histogram of the input photograph is also cal-
culated using the extracted cloud pixels. The rest of the parameters
are then estimated using GAs. The images of the synthetic clouds
are repeatedly created by using volume rendering techniques with
different parameter settings. GAs compute the objective function
for each of the candidate parameter sets to measure the quality of
the parameters and modify the parameters. Each set of parameters
is ranked by the objective function and high-ranking parameter sets
are stored. The output of our system is a set of high-ranking param-
eters and their corresponding images. The details are described in
the following subsections.

4.1 Colors of the Sun and the Sky

In order to estimate the intensity of the sky behind the clouds at
pixel q, Lsky(q, λ), we use the method proposed in Dobashi et al.
[2010]. First, each pixel in the input photograph is classified into
either a cloud pixel or a sky pixel depending on the chroma of each
pixel (see [Dobashi et al. 2010] for more details). The color of the
sky behind the clouds is then calculated by removing the cloud pix-
els and then interpolating the colors of the removed pixels from the
surrounding sky pixels. For this interpolation, we use the Poisson
equation [Perez et al. 2003]. The intensities of the sky at the cloud
pixels are calculated by solving ∇2Lsky(q, λ) = 0 with the fixed
boundary condition that the intensities at the boundary of the cloud
pixels are equal to the average intensity of the neighboring sky pix-
els. If the above method does not work very well, our system allows
the user to verify and modify the result by hand.

The color of the incident light from the sun, cin(λ), is calculated in
the following way. Since the optical properties of the cloud parti-
cles are independent of wavelength, the colors of the bright regions
of the clouds are nearly equal to those of the light incident on the
clouds. We use this property to determine the color. First, the colors
of the cloud pixels are converted into grayscale. Each of the cloud
pixels is then classified into either a brighter or a darker pixel. For
this classification, we use the method proposed by Otsu [1979]. The
average color of the brighter cloud pixels is used for the color of the
light incident on the clouds. This approach works well even if the
sun is behind the clouds as shown in Fig. 1. However, the method
does not work well when the sun is completely hidden by optically
thick clouds. In this case, the estimated color would be a gray. This
situation happens when the user specifies a photograph of an over-
cast sky.

4.2 Estimating Parameters using Genetic Algorithms

Besides cin and Lsky , there are eight unknown parameters as
shown in Table 1 (note that the extinction coefficient κa depends
on the wavelength λ (= R, G, B)). Our method uses GAs to search
for the optimal parameters that minimize the objective function O
defined by Eq. 2. In order to increase efficiency, we divide the
search process into two parts.

As described above, the intensity of light reaching the viewpoint

searching for the best κ∗
a providing 

minimum value of objective function O*

 κa = 0, O* = inf.

computing Icg

computing objective function O 

generating candidates of (Lin, g, β, κc, Lamb) 

computing intensity of clouds

converged ?

end

start

yes

no

O < O*

κ*
a = κa, O* = O

yes

no

Figure 3: Estimation of parameters using a genetic algorithm.

through pixel q is calculated by blending the intensities of the
clouds and the sky. The blending factor is determined by the dis-
tance from the viewpoint to the clouds and the extinction coefficient
for the atmospheric particles. Thus, the intensity of pixel q of the
synthetic image is calculated by:

Lcg(q, λ) = Lc(q, λ) exp(−κa(λ)tc)

+(1.0− exp(−κa(λ)tc))Lsky(q, λ), (3)

where Lc is the intensity of the clouds, Lsky is the intensity of the
sky behind the clouds, and tc is the distance from the viewpoint to
the clouds. When the sunlight reaches a point between the view-
point and the clouds, it scatters toward the viewpoint. The second
term approximates this component. When the distance tc becomes
infinity, it converges to the intensity of the sky, Lsky . The above
equation implies that atmospheric effects and the intensity of the
clouds can be separately computed, since Lc is independent of κa.
This leads to the following estimation algorithm: GAs are applied
only to the five parameters related to the clouds (Lin, g, σt, β,
Lamb) and the extinction coefficient of the atmosphere, κa(λ), is
determined using a linear search algorithm. Fig. 3 illustrates the
details of our estimation algorithm. First, candidates for the five
parameters are randomly sampled using GAs and, using these pa-
rameters, the intensity of the clouds is calculated. Next, the value of
κa that minimizes the objective function O is searched by sampling
κa at regular intervals. For each sampled value of κa, a synthetic
image Icg is created and the function O is calculated. The minimum
value of O is then fed back into the GAs and improved candidates
for the parameters are generated. By repeating these processes, our
method searches for the optimal set of parameters.

The search process terminates if one of the following three condi-
tions is satisfied: 1) the objective function becomes smaller than a
specified threshold εO , 2) the best parameters are unchanged during
a specified number of successive iterations nsuc, and 3) the number
of iterations exceeds a specified number nmax.

For the GAs, we basically follow the standard approach
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Figure 4: Intensity calculation of clouds.

[Goldberg 1989]. Each cloud parameter is quantized and converted
into a corresponding binary bit string. Then, the bit strings for all
the cloud parameters are connected into a single longer bit string
that is used as the gene of an individual. Initially, GAs generate
n individuals using random numbers, where n is specified by the
user. GAs iteratively generate a new set of n individuals based on
a fitness function that evaluates the quality of each individual. We
use the inverse of our objective function, 1/(O + 1), as the fitness
function so that the maximum is one. New individuals are gener-
ated through two genetic operators, one called a crossover operator
and the other a mutation operator. We use a two-point crossover.
We also employ a so-called elitist selection strategy, by which the
best individual at a certain iteration is carried over to the next iter-
ation. We chose these genetic operators experimentally. Although
there are different operators such as a one-point crossover, we have
not observed any significant differences in the convergence of the
objective function. The elitist selection, however, is important to
increase the convergence speed. For more details about GAs, there
are many good textbooks such as the one by Goldberg [1989].

4.3 Acceleration of Intensity Calculation of Clouds

Although the estimation method described in the previous subsec-
tion works well, the computational cost is very expensive. At each
iteration of GA, there are n individuals and so we need to calcu-
late the synthetic image, Icg , n times. In our experiments, we use
n = 20 and our method usually takes 50 iterations before conver-
gence. In this case, the clouds need to be rendered 1, 000 times.
This is very time-consuming especially when taking into account
multiple scattering. During optimization, we assume a fixed cam-
era position and a fixed sun direction. Under these assumptions,
we can precompute a set of images with different parameter set-
tings. Then, the synthetic images Icg can be generated efficiently
by interpolating the precomputed images. In the following, details
of the precomputation are described. Note that the notation used in
the following equations is different from the traditional kind in or-
der to clarify the relationship between the functions in the intensity
calculation and the unknown parameters.

The most time-consuming part is calculating the intensity of the
clouds, Lc. Lc is expressed by the sum of the following three com-
ponents: the intensity due to single scattering Ls, the intensity due
to multiple scattering Lm, and the intensity of light reaching the
viewpoint from the background sky behind the clouds after attenu-
ated by the cloud particles, Lb. That is,

Lc(q, λ) = Ls(q, λ) + Lm(q, λ) + Lb(q, λ). (4)

We precompute a set of images for each of the three components,
as described in the following sections. We assume that the sun is
the only light source. Skylight is not taken into account.

Single scattering: Let us consider a point x(t) on the viewing ray
as shown in Fig. 4, where t indicate a distance from the viewpoint

xv . Light incident on the clouds reaches point x(t) after being at-
tenuated by the cloud particles. It then scatters at point x(t) toward
the viewpoint and is attenuated again by the cloud particles between
the viewpoint and point x(t). The intensity of the scattered light
is determined by the phase function. The intensity due to single
scattering, Ls, is obtained by accumulating the scattered intensities
along the viewing ray. The constant ambient term Lamb is included
in this single scattering component. We assume that each cloud par-
ticle emits a certain amount of ambient light and so the intensity due
to the ambient light at a point is proportional to the cloud density.
The total intensity due to the ambient light reaching the viewpoint
is then obtained by accumulating the ambient light along the view-
ing ray taking into account the attenuation due to cloud particles.
Let us denote the attenuation between an arbitrary pair of points x
and y as τ(x,y, σt), which depends on the extinction cross section
σt. The intensity due to single scattering is then represented by:

Ls(q, λ) = cin(λ)Linβp(θ, g)

×
∫ T

0

σtρ(x(t))τ(xl,x(t), σt)τ(xv,x(t), σt)dt

+ cin(λ)Lamb

∫ T

0

ρ(x(t))τ(xv,x(t), σt)dt, (5)

where p is the phase function, θ is called the phase angle defined by
the angle between the incident light direction and the scattered light
direction, g is the asymmetry factor, and ρ(x(t)) is number density
of cloud particles at point x(t). xl represents the position of the sun
and T is the length of the intersection segment between the viewing
ray and the clouds. In the first term on the right, the phase function
p is outside of the integral since the sun is assumed to be a parallel
light source and therefore the phase angle θ is the same at every
point on the viewing ray. The last term on the right indicates the
effect of the constant ambient term. In the above equation, the two
integral terms can be precomputed for a different value of σt sam-
pled at regular intervals. These integral terms are evaluated using
the ray-marching method.

Multiple scattering: We use a Monte-Carlo method, a forward
path tracing, to compute the multiple scattering. To compute the in-
tensity of a pixel, many light paths are randomly generated and their
contributions are calculated. The intensity of a pixel is estimated as
the average of the contributions [Yue et al. 2010]. A light path is
constructed from the viewpoint by randomly generating successive
scattering events. Let us consider a light path l through pixel q con-
sisting of k points where scattering events occur (see Fig. 4). When
the probability of generating the light path is P , the contribution of
this path to the pixel intensity can be written as:

Δ(k)
m (λ) = Lincin(λ)β

kτ(xv,x1, σt)/P

×
k∏

i=1

p(θi, g)σtρ(xi)τ(xi,xi+1, σt), (6)

where θi represents the phase angle at point xi. xk+1 corresponds
to the position of the sun xl. For more details on the computa-
tion for multiple scattering, please see the supplemental document.
We could precompute the multiple scattering component for vari-
ous values of β, g, and σt but this would be very time-consuming.
Instead, our method precomputes the following function for each
pixel q by sampling g and σt regularly:

f (k)
m (q, g, σt) = E[τ(xv,x1, σt)/P

×
k∏

i=1

p(θi, g)σtρ(xi)τ(xi,xi+1, σt)], (7)

where E represents the average of the contributions from many
light paths. We precompute the above function for k ≥ 2 since
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Table 2: Volume resolutions and precomputation times. Note that,
for Fig. 14, multiple scattering is not taken into account.

figure volume resolution precomputation
Fig. 1 194× 122× 194 21 min.
Fig. 5 150× 256× 150 12 min.
Fig. 12 402× 402× 66 28 min.
Fig. 14 202× 82× 102 4 sec.

(a) (b)

(c) (e)(d)

Figure 5: Verification of our method. (a) synthetic source image,
(b) image with parameters estimated by using (a), (c) source im-
age with a different viewpoint and a different sunlight direction, (d)
image with parameters used for (b), and (e) image rendered with
parameters estimated by using (c).

the single scattering component is calculated by Eq. 5. Then, the
intensity of light due to multiple scattering is calculated efficiently
by:

Lm(q, λ) = Lincin(λ)

nm∑
k=2

βkf (k)
m (q, g, σt), (8)

where nm is the maximum number of scattering events and is spec-
ified by the user.

Attenuated intensity of the sky: Lb is expressed by the following
equation.

Lb(q, λ) = τ(xv,xb, σt)Lsky(q, λ), (9)

where Lsky is the intensity of the sky behind the clouds calculated
in Section 4.1. Our method precomputes τ(xv,xb, σt) that repre-
sents the attenuation due to cloud particles on the viewing ray.

The precomputed data for the above three components are stored
in the form of images with a floating point precision. Then, com-
putation of the intensity of the clouds results from a set of image
composition operations. We use a GPU to accelerate both the pre-
computation and the intensity calculation of clouds.

5 Results

This section shows some experimental results. We used a
desktop PC with an Intel Corei7-2600K 3.40 GHz (CPU) and
an NVIDIA GeForce GTX590 (GPU). The search ranges for
the parameters used for rendering were: 0 ≤ Lin ≤ 10
and 0 ≤ Lamb, β, g, σt, κa(λ) ≤ 1. The cloud parameters
(Lin, Lamb, β, g, σt) were quantized with 32 bit precision. The
interval for κa for the linear search was 0.1. We took into account
up to fourth-order multiple scattering. The sampling interval of σt

and g for precomputation was 0.1. The precomputed data is lin-
early interpolated in computing the intensity of clouds for arbitrary
values of g and σt. The image size was 320 × 240 during the
estimation process. The computational and memory costs are pro-
portional to the image resolution, so we used images with as low
a resolution as possible for the estimation. Since the resolution of
the cloud volume used in this paper was around 2003, we found,

iterations
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e 
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Figure 6: Transition of the objective function.

experimentally, that 320 × 240 images were sufficient. In addi-
tion, the low resolution image is sufficient for estimating only eight
parameters. The size of the precomputed data was 141 MB. Note
that, after determining the parameters, the final images were ren-
dered with higher resolution. The size of the images shown in this
paper is 640×480. The criteria to terminate the search process are:
εO = 0.5, nsuc = 20, and nmax = 100 (see the third paragraph of
Section 4.2). For the experiments shown in Section 5.1, the search
process was forcibly iterated until 100 times for validation purpose.
For other examples, the number of iterations ranged approximately
from 20 to 80 (see supplemental video showing the optimization
process). The parameters used to render synthetic clouds are shown
in the supplemental material.

As mentioned in Section 4.3, the number of individuals for GAs,
n, is 20. Using our method, the computation time for a single it-
eration is 0.1 sec. The volume resolutions and the precomputation
times are shown in Table 2. Without our acceleration method, it
took about 30 seconds to render a single image taking into account
multiple scattering. Therefore, considering the clouds have to be
rendered n = 20 times for each iteration, our method achieves ap-
proximately 6,000 times faster computation for the optimization.
When including the precomputation, the speedup ratio reduces to
50 to 100 times. However, once the precomputation has been done
the user can try different photographs, unless the user changes the
sunlight direction and the viewpoint used to render the synthetic
clouds.

5.1 Experimental Results

In order to investigate the capability of our method, we conducted
several experiments. Note that, in the experiments shown in this
section, we use the parameters of the highest rank in order to avoid
subjective judgment.

First, in order to verify the ability of our method to find the opti-
mal parameters, we tested the method using a synthetic image as a
source image (see Fig. 5). We first rendered the image of synthetic
clouds shown in Fig. 5(a) and used this image as the source im-
age. The density distribution of the clouds was generated using the
procedural technique [Ebert et al. 2009]. Fig. 5(b) shows the image
using the optimal parameters estimated by our method. Next, we
changed the viewpoint and the sunlight direction, and rendered the
clouds again. Fig. 5(c) shows the image with the true parameters.
Figs. 5(d) and (e) correspond to the images rendered with the pa-
rameters used for Fig. 5(b) and with the parameters estimated by
using Fig. 5(c), respectively. Figs. 5(c) and (d) show one of the lim-
itations of our method in that the appearance of the clouds rendered
using the estimated parameters is different from that of the source
clouds when the viewpoint and the sunlight direction are different
from the ones used for the estimation process. However, by op-
timizing the parameters using Fig. 5(c), the appearance becomes
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(difference �20) (worst)(best) (difference �5)

(worst)(difference �20)(best) (difference �5)

(a) results using histogram difference

(b) results using pixel-by-pixel intensity difference

Figure 7: Comparison of results between histogram difference and
intensity difference.From left to right, the best image, difference be-
tween the best image and Fig. 5(a), the worst image, and difference
between the worst image and Fig. 5(a).Intensities of the difference
images are multiplied by 20 or 5 for visualization purpose.

(a) (b) (c)

(d) (e) (f)

Figure 8: Estimation results with different input directions of the
sun. (a) through (c) are estimated by Fig. 5(a) and (d) through (f)
are by Fig. 5(c).

similar (Fig. 5(e)). The parameters for Figs. 5(c) and (e) are differ-
ent (see supplemental material). This indicates that there are multi-
ple local minima and our method finds one of them. This result is
satisfactory for the purpose of finding the parameters that make the
synthetic clouds similar to the source image. Fig. 6 shows the con-
vergence of the objective function. This figure demonstrates that
the optimal parameters can be found before 100 iterations. Some of
the images during the optimization are shown in this figure.

In order to investigate the validity of using the histogram, we com-
pare our objective function with an objective function using square
sum of the pixel-by-pixel intensity differences. For this compari-
son, we use the synthetic clouds shown in Fig. 5(a). We executed
our method a hundred times for both of the objective functions.
We assume that the extinction coefficient for atmospheric particles,
κa, is independent of the wavelength λ for this experiment. Fig. 7
shows the best and the worst images obtained by using these ob-
jective functions. Although the pixel-by-pixel intensity differences
produce slightly better results than the histogram difference, the
quality of the results is almost the same.

Next, we investigated the sensitivity of our method to the direction
of the sun, specified by the user. We use Figs. 5(a) and (c) as source
images. For estimating the parameters, we chose three different
sun directions, which were 10, 20, and 40 degrees from the true
directions. The results are shown in Fig. 8. For Figs. 8(a) through
(c), Fig. 5(a) was used to estimate the parameters, and for Figs.
8(d) through (f), Fig. 5(c) was used. As shown in these images, our
method can find appropriate parameters that can produce clouds
with similar appearance, even if the sun direction is different from
the true direction.

Next, in order to investigate the validity of using GAs, we compared
our results with results obtained by a gradient-based optimization
method. We chose the simplest method called the descent gradient
method [Snyman 2005]. Using the source image and the synthetic

(worst)(best)

(c) descent gradient
(worst)(best)

(b) our method(a) photo

Figure 9: Comparison of images obtained by our method (a) and
the descent gradient method (b).

(a)

(d)

(b)

(e)

(c)

(f)

Figure 10: Comparison of our method with the color transfer
method. (a)(d) color transfer results, (b)(e) our results, and (c)(f)
images with different viewpoints and light directions.

clouds shown in Fig. 1(a), we executed both methods a hundred
times with different initial parameters determined randomly. Then,
we computed the averages and standard deviations of the objective
function. The averages/standard deviations of our method and the
descent gradient method are 0.40/0.01 and 1.32/0.55, respectively.
The descent gradient method often converged to a local minimum
and it depended significantly on the initial parameters. Fig. 9 shows
the images rendered with the best and worst parameter sets. Fig.
9(a) shows the source image. The images in Figs. 9(b) and (c)
correspond to the best and the worst parameters obtained by our
method and the descent gradient method, respectively.

Next, in order to demonstrate the importance of estimating the
parameters, we compared our results with results using the color
transfer method [Reinhard et al. 2001] (Fig. 10). We used two pho-
tographs as the source images for the color transfer, as shown in the
inset images of Figs. 1(b) and (d). For the synthetic image before
color transfer, we used the image shown in Fig. 1(a). This image
was rendered with both single and multiple scattering. The results
obtained by the global color transfer method [Reinhard et al. 2001]
are shown in Figs. 10(a) and (d). The color transfer method was
applied to the cloud pixels only. Figs. 10(b) and (e) show images
rendered with parameters estimated by our method. In estimating
the parameters, the same direction of the sun as in Fig. 1(a) was
used. In Figs. 10(a) and (d), the colors are successfully transferred
but the translucency of the clouds is not reproduced, making the re-
sulting images unrealistic. Our method successfully reproduced the
transparency and subtle color variations and realistic images were
generated. Furthermore, after the optimal parameters of the clouds
are obtained, we can easily create synthetic images with different
viewpoints and sunlight directions, as shown in Figs. 10 (c) and (f).

Finally, Fig. 11 demonstrates the attribute that allows the user to
modify the parameters estimated by our method. We modified the
parameters used to create Fig. 10(c). The color of the clouds is
changed by modifying the color of the incident light cin(λ) (Fig.
11(a)). In Fig. 11(b), the extinction cross section of the cloud parti-
cles σt is modified to increase the transparency of the clouds.
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Figure 13: Snapshots from an animation of cumulonimbus development. The leftmost and the rightmost images are rendered with the
parameters used for Fig. 1(a) and Fig. 1(d), respectively. The parameters for the in-between images are linearly interpolated.

(a) (b)

Figure 11: Examples of editing parameters after optimization. Af-
ter the color of incident light (cin(λ) is modified as shown in (a),
the extinction cross section σt is decreased (b).

(a) (b)

Figure 12: Example of cumulus clouds. White clouds at daytime
(a) and yellowish clouds at sunset (b). The inset in each image is
used to optimize the parameters to render these clouds.

5.2 Practical Examples

Fig. 1 shows an example of cumulonimbus clouds generated by
fluid simulation [Miyazaki et al. 2002]. The inset in each image
is the input photograph of the clouds. By estimating the parame-
ters for rendering the clouds, the subtle color variations observed
in the photograph are reproduced in the synthetic clouds. Fig. 12
shows examples of cumulus clouds rendered using the parameters
obtained by our method. The volume data of the clouds are gen-
erated by fluid simulation [Miyazaki et al. 2002]. Figs. 12(a) and
(b) show the cloud at daytime and sunset, respectively. This exam-
ple demonstrates that our method can handle multiple clusters of
clouds. Fig. 13 shows an application of our method to create an
animation of dynamic clouds. We used two parameters to render
the daytime and the sunset clouds in Fig. 1 to create the animation
with the position of the sun changing. The parameters were linearly
interpolated. Fig. 13 shows snapshots from the animation. Realistic
color transitions are realized. Fig. 14 shows an example of unnatu-
ral clouds. The clouds were generated using controlled simulation
[Dobashi et al. 2008]. In this example, we replaced the real clouds
in the source photograph (shown in the inset image) with the syn-
thetic clouds, rendered using the optimized parameters. This exam-
ple was created by taking into account single scattering only. The
synthetic clouds are naturally composited onto the real photograph.
Finally, Fig. 15 shows an application of our method for creating an
animation where the sun and the viewpoint move. The parameters
for rendering clouds are estimated for Figs. 15(a) and (f) by using
the photographs shown in Figs. 1(a) and (c), respectively. From

Figure 14: Replacement of the clouds in the photograph.

(a) (b) (c)

(d) (e) (f)

Figure 15: Application of our method to an animation where the
sun and the viewpoint move.

Fig. 15(a) to (c), the viewpoint moves but the parameters for ren-
dering the clouds are the same. From Figs. 15(d) to (f), both the
viewpoint and the parameters are interpolated.

6 Discussion

First, we would like to discuss our objective function, i.e., the his-
togram difference. The choice of the objective function is impor-
tant to find the appropriate parameters. One of the straightforward
approaches is to use pixel-based intensity differences between syn-
thetic images and photographs. However, we cannot employ this
approach since the shapes of the synthetic clouds and the real clouds
in the photograph are different. The problem treated in this pa-
per is equivalent to searching for the optimal image from an in-
finite number of images with different parameter settings. Image
retrieval applications treat a similar problem and color histograms
are often employed to measure the visual difference between im-
ages. This is the main reason for our use of a color histogram.
Bonneel et al. [2009] also used color histograms to estimate the pa-
rameters for hair rendering from a single photograph. We examined
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several metrics for histogram matching such as difference, correla-
tion, Chi-square, intersection, Bhattacharyya distance, and Earth
Mover’s Distance (see OpenCV manual for details). Since our ex-
periments showed that the qualities of the results were similar for
all of these, we chose the simplest one, the histogram difference.
In some cases, however, our method might converge to the wrong
local minimum and produce an unnatural appearance. This is one
of the reasons why our system records a set of high-ranking param-
eters. An example of the wrong parameters is shown at the end of
the supplemental video showing the optimization process. The rank
7 image corresponds to the wrong parameters. However, there are
also good results among the high-ranking parameters.

One limitation of our method is that the direction of the sun is fixed
during the optimization process. When the direction is changed, the
precomputed data has to be recalculated. Therefore, the user needs
to be careful when choosing the direction. A simple solution to this
problem is to perform the precomputation for multiple directions
of the sun, though this results in a long precomputation time and
increased size of the precomputed data. Another solution would
be to use a method to estimate the sun direction from photographs
[Lalonde et al. 2012].

Currently, we do not take into account the skylight as a light source.
We could approximate the effects of the skylight by making the am-
bient term wavelength-dependent. However, this approach results
in a slower convergence speed since the search space is significantly
increased. It would be much better to estimate the intensity dis-
tribution of the sky from a photograph [Lalonde et al. 2012] before
using GAs in order to efficiently estimate the effects of the skylight.

In the examples shown in this paper, we took into account up to
fourth-order multiple scattering. Although our method can han-
dle higher order scattering, increasing the scattering order results
in greater amount of precomputed data. One solution would be to
cluster high orders of scattering into several sets (e.g., 2, 3-4, 5-6,
and so on) as proposed by Bouthors et al. [2008]. Furthermore,
we can compress the precomputed data using, e.g., wavelets. These
would reduce the storage cost for the precomputed data.

The parameters estimated by our method are valid only for the
viewpoint and the sunlight direction used in the optimization pro-
cess. The appearance of synthetic clouds rendered with a different
viewpoint and a different sunlight direction would be different from
the appearance of the clouds in the photograph. However, in our ex-
periments, we could successfully create realistic images even if the
viewpoint and the sunlight direction were changed. Although there
are a few cases where the results are not very realistic, we were able
to obtain good results in most cases. The supplemental video show-
ing some applications of our method includes good results as well
as not very realistic results (around 0’44” in the video). This prob-
lem could be addressed by using multiple photographs taken under
different conditions. However, we suggest the simpler solution of
estimating multiple sets of parameters at multiple key frames us-
ing multiple photographs. The parameters are then interpolated to
render the clouds between the key frames. The examples shown in
Figs. 13 and 15 use this method.

Some care needs to be taken in choosing the input photograph. In
our method, we assume that the density of atmospheric particles is
uniform. However, in the real world, the density decreases expo-
nentially with the height from the ground. This sometimes results
in a color variation of light incident on the clouds. Such color vari-
ation cannot be handled by our method. This is a typical failure
case of our method and an example is shown in Fig. 16. As shown
in the inset of Fig. 16, the color of the clouds in the photograph is
reddish near the horizon but is white around the top of the clouds.

(photo)

(estimated result)

Figure 16: A failure case.

This effect is not reproduced
in the synthetic image rendered
with the parameters estimated by
our method (Fig. 16). This
problem can be addressed by in-
cluding the rate of the expo-
nential decay of the density as
an additional unknown variable.
Except for the above problem,
our method can find the param-
eters for any combination of in-
put photograph and volume data.
However, even if the histograms are similar, the synthetic clouds
may not seem to be similar to the clouds in the photograph, when
the cloud types are different, e.g., cumulus and cirrus.

Our method does not take into account the physical validity in es-
timating the parameters. The parameters obtained by the method
are simply the ones that can render synthetic clouds similar to those
in the photograph. We believe that this is sufficient for many ap-
plications in computer graphics. Although we use photographs to
determine the parameters in this paper, it is also possible to use
images designed by the user. After rendering an initial image, the
user can use image editing tools to modify the color, transparency,
and contrast of the image. Then the edited image can be used to
estimate the parameters using our method.

7 Conclusion and Future Work

We have proposed a method for solving the inverse rendering prob-
lem for clouds: estimating the parameters that can render a spec-
ified appearance. The difference in appearance is measured using
color histograms. We used genetic algorithms to solve the inverse
problem. We accelerated the computation by precomputing a set of
intermediate images and by utilizing a GPU. Using our method, the
optimal parameters can be found within a minute. We demonstrated
the capability of our method using a set of examples.

One of our future works is to find an optimal sampling pattern for
each of the parameters. Currently, the parameters estimated by ge-
netic algorithms are sampled regularly. However, adaptive sam-
pling would be more suitable for some of the parameters, such as
the extinction cross section σt, since the intensity of the clouds is
considered to be exponentially proportional to the change in those
parameters. Finding the optimal sampling patterns would improve
the performance of our method. Another future work is to make the
parameters spatially variable. This makes it possible to adjust the
local appearance of the clouds.
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