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Fig. 1. We script four rigid bunnies to rapidly rotate about the vertical axis while simultaneously moving into and out of a packing of 360,000 grains. The
bunnies inject a large amount of energy into the system, inducing significant displacements in the interior while producing an energetic splash near the free
surface. Our hybrid algorithm for simulating granular materials couples a continuum treatment of the interior to a discrete element treatment of the free
surface, inheriting the dual benefits of both approaches. The first two frames show a cutaway view of our hybrid algorithm, the third frame shows a full
rendering of our hybrid algorithm, and the fourth frame shows a cutaway view of a fully discrete simulation. Our hybrid algorithm uses 88% fewer discrete
grains and achieves a 6.84× speedup relative to a purely discrete simulation.

We propose a technique to simulate granular materials that exploits the dual
strengths of discrete and continuum treatments. Discrete element simula-
tions provide unmatched levels of detail and generality, but prove excessively
costly when applied to large scale systems. Continuum approaches are com-
putationally tractable, but limited in applicability due to built-in modeling
assumptions; e.g., models suitable for granular flows typically fail to cap-
ture clogging, bouncing and ballistic motion. In our hybrid approach, an
oracle dynamically partitions the domain into continuum regions where
safe, and discrete regions where necessary. The domains overlap along
transition zones, where a Lagrangian dynamics mass-splitting coupling prin-
ciple enforces agreement between the two simulation states. Enrichment
and homogenization operations allow the partitions to evolve over time.
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This approach accurately and efficiently simulates scenarios that previously
required an entirely discrete treatment.
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1 INTRODUCTION
Granular materials, as a ubiquitous component of our natural world,
are an important topic of study in fields ranging from the geo-
sciences and film visual effects [Ammann et al. 2007] to robotics
[Brown et al. 2010]. Granular materials trail only water as the most
commonly handled industrial material [Richard et al. 2005], and a
predictive understanding of granular materials is key to the indus-
trial scale processing of construction materials, pharmaceuticals,
food, and sand. Despite their importance, formulating predictive
models of granular materials remains challenging, as they exhibit
interesting behavior at multiple scales and phases.
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When viewed from up close, the varied contact and tribological
interactions between individual grains govern grain-scale behav-
iors such as packing, clogging, rolling and bouncing. These behav-
iors are accurately captured by discrete particle models; indeed,
such models are considered the “gold standard” and are often used
as a ground-truth validation for continuum models [Rycroft et al.
2009]. Unfortunately, discrete particle models are computationally
intractable when scaled to a large number of grains.

When viewed from afar, ensembles of grains can exhibit con-
tinuum behaviors of elastic solids (forming static piles), liquids
(flowing plastically and sustaining permanent shape change), and
gases (sparse grains in free flight ballistic motion) [Jaeger et al.
1996]. Continuum models of granular media do not explicitly rep-
resent individual grains, which makes these models amenable to
the simulation of large numbers of grains. However, built in mod-
eling assumptions specialize these models to certain phases and
boundary conditions. For instance, a model that focuses on dense
soils typically fails to capture other phenomena. Indeed, the state of
the art in continuum modeling lacks a general, accurate, validated
treatment of those grain-scale effects that can profoundly determine
the evolution of the continuum-scale bulk: small scale rapid colli-
sions near free surfaces allow individual grains to separate from
the bulk material, the finite size nature of individual grains can
lead to clogging in narrow chutes or during drainage scenarios, and
grain-scale shear banding can mediate larger scale deformations.

We are seemingly faced with a harsh trade-off. We can choose a
general, accurate, but slow discrete treatment; or a fast, scalable, but
specialized continuum treatment. To provide a more nuanced trade-
off, we propose to hybridize the discrete and continuum approaches.

We propose to apply a continuum model where it is safe to do so,
while resorting to a discrete model where necessary (as in Fig. 1). We
derive computational performance from the continuum model, and
invest extra computation for grain-scale phenomena where needed.

In formulating a hybrid method to simulate granular materials,
we introduce three core contributions: a method to efficiently couple
a continuum material point simulation to a discrete element simu-
lation, an adaptive granular oracle to identify regions that behave
according to a continuum model (the regions, which for the purposes
of this paper, are based off of distances from granular free surfaces),
and a homogenization and coarsening technique to dynamically
covert between continuum and discrete representations.

2 RELATED WORK
We draw on a wide body of literature on the modeling and simulation
of granular materials with discrete and continuum treatments. We
also draw inspiration from work on hybridizing other physical
systems, particularly crystalline solids.

2.1 Discrete Particle Simulations
Discrete particles, originating in the molecular dynamics models
of Alder and Wainwright [Alder and Wainwright 1957, 1959, 1960],
have a long and successful history across scientific and engineering
disciplines [Frenkel and Smit 2001; Hoover 1986; Rapaport 2004].
These methods explicitly model the behavior of individual particles

and their subsequent interactions, and have been successfully ex-
tended as discrete element methods to simulate granular materials
[Cundall and Strack 1979; Gallas et al. 1992; Haff and Werner 1986;
Pöschel and Schwager 2005; Walton and Braun 1986]. These meth-
ods can be augmented to permit inelastic grain-level mechanics
such as grain breakage/fragmentation, as arises in many complex
real-world situations [Åström and Herrmann 1998; Ben-Nun et al.
2010; Nguyen et al. 2015; Tsoungui et al. 1999]. Discrete particle
approaches employ either a “soft” or “hard” contact and friction
formulation.

Penalty methods define a “soft” contact level constitutive relation
and integrate the resulting forces. They are popular owing both
to their simplicity and flexibility in defining interaction properties
[Kruggel-Emden et al. 2007; Shäfer et al. 1996]. Penalty’s disadvan-
tages lie in setting parameters that often require multiple tuning
and calibration passes, stiff, parasitic forces that are difficult to inte-
grate, and challenges in modeling incompressibility. The graphics
community has explored penalty-based simulations of granular ma-
terials, with works focused on the formulation of the constitutive
model [Luciani et al. 1995; Miller and Pearce 1989], approxima-
tions of static friction through irregularly shaped grains [Bell et al.
2005], resolution up-sampling [Alduán et al. 2009], extensions to
position-based simulations [Macklin et al. 2014], and interactions
with fluids [Rungjiratananon et al. 2008].

Contact dynamics (CD) methods treat interactions with “hard”
constraints [Acary and Brogliato 2008; Baraff 1989; Brogliato 2012;
Jean 1999; Stewart 2011]. Originating in the work of Moreau [1983;
1988], CD treats contact and friction through constrained formu-
lations, typically equivalent to mixed linear complementarity for-
mulations (MLCP) [Stewart 2000; Stewart and Trinkle 1996]. While
CD avoids many drawbacks of penalty methods, finding optimal
solutions to their MLCP formulation is computationally difficult
[Kaufman et al. 2008]. Significant attention has been directed to the
accurate numerical solution of these models [Alart and Curnier 1991;
Bonnefon and Daviet 2011; Daviet et al. 2011; Duriez et al. 2006; Jean
and Moreau 1992; Jourdan et al. 1998; Stewart 2001], to convex relax-
ations of CD [Anitescu and Hart 2004b; Mazhar et al. 2015; Preclik
2014], to numerical methods suited for interactive simulations [Er-
leben 2007; Tonge et al. 2012], and to non-zero restitution [Smith
et al. 2012; Uchida et al. 2015].

2.2 Continuum Granular Models
Our work builds on a rich history in the study of granular materials,
the foundations of which were laid by Coulomb who first posited
a relationship between the imposed pressure and the resistance
to shear motion through a coefficient of friction. Modern variants
include critical-state [Schofield and Wroth 1968] and anisotropic
models [Dafalias et al. 2004; Rothenburg and Bathurst 1989]. The
rate-sensitive inertial rheology [Groupement de Recherche Milieux
Divisés (GDR MiDi) 2004; Jop et al. 2006] has proven effective at
modeling fast flows, while non-local models [Aranson and Tsim-
ring 2002; Kamrin and Koval 2012; Mohan et al. 2002] account for
finite grain sizes by introducing non-local terms to the continuum
description.
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2.3 Continuum Simulation Methods
Within the scientific and engineering communities, a variety of
simulation techniques for granular materials have been proposed,
typically targeted towards specific flow regimes. For quasi-static
and small-strain simulations, standard finite element analysis tech-
niques are applicable [Zienkiewicz and Taylor 2000]. Finite volume
discretizations have been successfully applied to faster flow regimes
[Lagrée et al. 2011]. The material point method (MPM) [Sulsky et al.
1994] has been extended to the simulation of granular materials
[Więckowski 2004], with Dunatunga and Kamrin [Dunatunga and
Kamrin 2015] proposing recent extensions to more accurately model
the dilute phase.

Within graphics the simulation of granular materials with hybrid
Eulerian-Lagrangian discretizations has received significant atten-
tion. Zhu et al. [2005] augmented an incompressible fluid-implicit
particle (FLIP) solver with a Mohr-Coulomb yield criterion to iden-
tify rigid and flowing regions. Narain et al. [2010] draw an analogy
to a discrete contact dynamics solver, and by mirroring the discrete
solver’s structure obtain unilaterally incompressible granular simu-
lations with a faceted frictional yield criterion. Daviet et al. [2016]
remedy artifacts in Narain’s approach by employing a smooth yield
criterion and support more general models like the µ (I ) rheology,
while Klár et al. [2016] augment an elastoplastic MPM simulation
with a Drucker-Prager yield criterion featuring an angular momen-
tum conserving APIC transfer [Jiang et al. 2015]. More recently,
multi-physics techniques to simulate mixtures of sand and water
[Gao et al. 2018; Tampubolon et al. 2017] and sand and rigid bodies
[Hu et al. 2018] with MPM have been proposed.

In concert with the developments in hybrid Eulerian-Lagrangian
discretizations, the graphics community has pushed work on fully
Lagrangian discretizations forward, beginning with incompressible
smooth-particle hydrodynamics (SPH) techniques [Lenaerts and
Philip 2009]. Subsequent work has explored unilateral incompress-
ibility in the context of SPH [Alduán and Otaduy 2011]. Recent
works have continued to incorporate general advancements in SPH,
with impressive visual results obtained through force-aware upsam-
pling [Ihmsen et al. 2013].

The graphics community has also explored the specialized simula-
tion of granular surfaces [Chanclou et al. 1996; Li and Moshell 1993;
Onoue and Nishita 2003; Pla-Castells et al. 2008; Sumner et al. 1999],
achieving fast simulations for restricted modes of deformation.

2.4 Coupled Fluid Simulations
Previous works couple complementary fluid simulation methods.
Closest to our work, Golas et al. [2012] simulate interior regions
with a Lagrangian vorticity method and treat boundary interac-
tions with an Eulerian technique, and couple these domains using a
Schwarz method [Toselli and Widlund 2006]. Other works simulate
free surfaces using narrow bands of FLIP particles and treat the
interior using an Eulerian simulation [Ferstl et al. 2016], couple SPH,
shallow water, and Eulerian treatments within a single framework
[Chentanez et al. 2015], and couple SPH simulations to a particle
level set method [Wang et al. 2013].

2.5 Hybrid Granular Simulations
Quasi-Continuum and Arlequin-type methods have been explored
primarily for crystalline solids, to expedite otherwise lengthy atom-
istic simulations by hybridizing with a crystal plasticity continuum
model in zones where atomistic refinement is not needed [Dhia
1998; Shimokawa et al. 2007; Smith et al. 2001; Tadmor et al. 1996;
Zhang and Ge 2005]. The idea of hybridizing discrete-particle and
continuum approaches to simulate granular media is in its infancy,
with only initial work done to show the validity of communicating
mechanics between discrete grains and finite-element facets [Yan
et al. 2010]. Recent work has explored when continuum and dis-
crete treatments are simultaneously accurate [Kamrin 2010; Kamrin
and Koval 2014; Rycroft et al. 2009], including an Arlequin-type
method that couples statically-defined regions of a discrete element
(DEM) simulation to the interior of a continuum FEM-based simula-
tion to enrich stress fields around drill tips, for instance [Wellmann
and Wriggers 2012]. We build on and extend these ideas to target
regimes in which enriched degrees of freedom are required at sur-
faces, and where the boundary between continuum and discrete
regimes evolves dynamically.

In the granular physics and graphics literature, lower-level ideas
have been tried where instead of implementing a general contin-
uum model, the user imposes kinematic constraints to the particle
motion in certain regions, often chosen based on experience with
the problem at hand. The graphics literature has explored freezing
rigid bodies that are sufficiently stationary [Smith et al. 2005]. Simi-
lar techniques have been proposed to accelerate the generation of
granular packings for industrial applications [Mio et al. 2009]. In
common granular setups such as rotating tumblers and growing
sand piles, semi-empirical models can be used to guess zones of rigid
material, and grains in these zones can be removed from the discrete
update [Bouchaud et al. 1994; Hsu and Keyser 2010; McCarthy and
Ottino 1998; Zhu and Yang 2010]. Holladay et al. [2012] carve out
interior regions of granular materials moving at constant velocities
and replace these groups of grains with meshes, but this method
does not homogenize over rigidly rotating regions or over shear
flows, and as the paper notes, can lead to volume loss. These ideas
have been developed further in follow-up work [Holladay 2013;
Munns 2015]. These methods make no claims as to the accuracy of
the techniques for science and engineering applications, and have
not yet demonstrated stable granular flows.

3 HYBRID KINEMATICS AND DYNAMICS
Our ultimate goal is to couple two consistent discretizations of a
granular medium that are tailored to different scales. We begin
by deriving a general method to spatially partition the equations
of motion of a mechanical system into coupled, overlapping do-
mains. With a simple constraint, the combined evolution of these
systems exactly reproduces the behavior of the original, unparti-
tioned system. With this formalism in place, we will apply separate
discretizations to the two partitioned domains, corresponding to a
discrete and a continuum treatment. Finally, we propose a method
to identify regions that require a discrete treatment, and a method to
dynamically transition between discrete and continuum treatments
as a simulation evolves.

ACM Trans. Graph., Vol. 37, No. 6, Article 283. Publication date: November 2018.



283:4 • Yonghao Yue, Breannan Smith, Peter Yichen Chen, Maytee Chantharayukhonthorn, Ken Kamrin, and Eitan Grinspun

Ω

w (x, t) ρ (x) (1− w (x, t)) ρ (x)ρ (x)

Fig. 2. Blurred Density: (Left) The reference domain Ω of an object with
density ρ (x). Mass density is colored in blue. (Right) A partition of unity of
the density mediated by a weight function w (x, t ).

3.1 Hybridization Through Constraints
Suppose that we view a single system as if it were two separate
systems. Let the mass density ρ (x) be defined over the reference
coordinates x ∈ Ω of a body (Fig. 2). We partition the density with
a space-time dependent weight function w (x, t) ∈ [0, 1], ensuring
that we recover the original density:

ρ (x) = w (x, t) ρ (x) + (1 −w (x, t)) ρ (x) . (1)

If we treat the new partitions as separate systems with generalized
coordinates (q1, v1) and (q2, v2), we can recover the kinematic de-
scription of the original system by requiring that q1 (x, t) = q2 (x, t).

With identical initial configurations q1 (x , t0) = q2 (x , t0), we can
equivalently enforce equal velocities via the constraint c (x, t) =
v1 (x, t)−v2 (x, t) = 0. Consistent with Fig. 3, our ultimate goal is to
treat the discrete particles and the continuum as the two subsystems
with a reconciliation zone wherever 0 < w < 1.

We derive our governing equations for the hybrid coupling from
Hamilton’s Variational Principle [Lanczos 2012]; for dissipative sys-
tems, the analogous derivation follows from the Lagrange d’Alembert
Principle, but the end result for our purposes is the same. This is a
didactic derivation, and we will later apply these coupling forces to
systems with friction, which still satisfies force/momentum balance.

Suppose kinetic T and potential U energies are given by

T =
1
2

∫
Ω
ρwvT1 v1dV +

1
2

∫
Ω
ρ(1 −w)vT2 v2dV ,

U =

∫
Ω
ρwe[q1]dV +

∫
Ω
ρ(1 −w)e[q2]dV ,

(2)

for potential energy per mass e . Here and henceforth, we omit
explicit parameters (x, t) when the dependence is clear. In addi-
tion, we couple the two systems via the augmented constraint
C =

∫
Ω
λT (v1 −v2)dV , where λ (x, t) is a Lagrange multiplier field.

The Lagrangian L = T − U + C is then incorporated into the
action functional

∫
t Ldt , and the calculus of variations yields the

Euler-Lagrange equations∫
Ω
wρa1 dV = −

∫
Ω
w ρ

δe

δq1︸︷︷︸
Force

Volume 1

dV −

∫
Ω
λ dV︸   ︷︷   ︸

coupling force

,

∫
Ω
(1 −w)ρa2 dV = −

∫
Ω
(1 −w) ρ δe

δq2︸︷︷︸
Force

Volume 2

dV +

∫
Ω
λ dV︸   ︷︷   ︸

coupling force

,

(3)

which are subject to the coupling constraintv1 = v2. The coupling
force, which acts equally and oppositely on the two systems to en-
force the constraint, arises naturally from the calculus of variations,
averting the formulation of ad-hoc communication models between
the two systems.

If we sum the two equations and substitute in the coupling con-
straint, we recover the original equations of motion for the entire
simulation domain. The weight function naturally defines a parti-
tion of unity for the masses and the energies, with smaller weight
values corresponding to a system having less influence in a given
region. Outside the reconciliation zone, (3) is simply the (usual)
equations of motion for two independent systems.

The Lagrange multiplier term operates as an external (constraint)
force to ensure that the velocities of each system are equal. Under
operator splitting, the above equations can be interpreted as first
having two sets of (usual) decoupled equations of motion

ρa1 = −ρ
∂e

∂q1
,

ρa2 = −ρ
∂e

∂q2
,

(4)

that are scaled by the weights, with a subsequent correction from
the equal and opposite constraint force to guarantee equal velocities.

We now replace these two abstract systems with a discrete parti-
cle system and a continuum system (Fig. 3). By ansatz, we require the
stress in the continuum domain to be compatible with the homoge-
nized frictional forces in the discrete domain. This homogenization
is realizable through the so-called Christoffersen formula [Christof-
fersen et al. 1981], which relates the continuum stress to the discrete
frictional contact forces via:

σi j =
1
V

N∑
α ∈contacts

1
2 (f

α
i dαj + f αj d

α
i ), (5)

where σi j is the (i,j) component of the stress tensor,V is the volume
about which one is homogenizing the stress, N is the number of
contacts in that volume, f αi is the ith component of the contact
force vector at the α th contact, and dαi is the ith component of the
vector connecting the centroids of the two grains in contact.

We employ a penalty formulation for the discrete frictional con-
tact forces, while we model the continuum as an elastoplastic mate-
rial with a Drucker-Prager yield criterion. We discretize and simulate
the continuum with the material point method.

3.2 Discrete Particle Simulation
Consider a granular medium in which each grain is modeled as a
rigid body. In 2D, each grain’s configuration is parameterized by
three degrees of freedom: two for the center of mass, and one for
the orientation. All 2D grains are circular in geometry. In 3D, all
grains are modeled as spheres and each grain’s configuration is
parameterized by six degrees of freedom, including three degrees
of freedom for the body’s center of mass xk and three degrees of
freedom for the body’s orientation Rk . Given K discrete grains, we
concatenate all degree of freedom into a single generalized configu-
ration vector qd ∈ R3K in 2D, and qd ∈ R

6K 3D. We can similarly
build a generalized velocity vector vd ∈ R3K and a generalized
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particle regime reconciliation zone continuum regime

Fig. 3. Hybrid Reconciliation Zone as a Blurred Transition: A density
partition applied to a partially discrete (left), partially continuum (right)
system. Note that for simplicity, in the current study we set the densities to
fixed values of 1/2 for each system throughout the reconciliation zone.

mass matrix Md ∈ R
3K×3K in 2D, andvd ∈ R6K and Md ∈ R

6K×6K

in 3D. The evolution of the system is now compactly described by

Mdad = fd (q,vd , t),

Ûqd = ω (q)vd ,
(6)

wheread is the generalized acceleration, fd contains all forces acting
on the system. In 3D the force includes the so-called “quadratic
velocity” term, andω (q) is the linear map from infinitesimal velocity
changes to infinitesimal configuration changes. Note that the later
two quantities depend on the choice of coordinates used to encode
each body’s orientation, with standard formulas available in the
literature [Shabana 2013].

To model contacts between bodies, we employ a discrete element
force-based penalty model [Cundall and Strack 1979]. This model is
well studied, is able to model stable piles, frictional size-dependent
jamming (clogging), and stick-slip behaviors, and has extensive val-
idation against experimental results. Of importance to our needs,
the Cundall and Strack penalty model has been shown to agree with
continuum predictions in the regimes where we seek to homoge-
nize the discrete dynamics [Rycroft et al. 2009]. The penalty force
computation is divided into two components, including a normal
force to resolve inter-grain penetration, and a tangential force to
model friction. The normal and tangential forces are in turn related
by a Coulomb friction constraint.

Concretely, the normal force is given by fn = kndn − γnvn ,
where d is the penetration depth at the contact, n is the contact
normal, kn is the normal contact stiffness constant,vn is the relative
velocity projected into the normal direction, and γn is the normal
damping coefficient. The tangential frictional force is given by ft =
kt∆s − γtvt , where kt is the tangential contact stiffness, ∆s is the
tangential anchor spring (described below), γt is the tangential
damping coefficient, and vt is the relative velocity projected into
the tangent plane. At the end of each time step, we update ∆s by
integrating the tangential relative velocity at the contact. We then
project any normal component out of ∆s , and rescale ∆s so the
Coulomb constraint ft ≤ µ fn is satisfied, where µ is the coefficient
of Coulomb friction.

A Newtonian restitution model can be implemented in this frame-
work by tuning the normal damping γn relative to the normal stiff-
ness kn . Given a desired coefficient of restitution (COR) e and a nor-
mal stiffnesskn ,γn is determined byγn = −2 ln e

√
mkn/(π 2 + ln2 e),

wherem is the mean mass of a grain [Kamrin and Koval 2014]. Note
that we run all simulations with a slight polydispersity in granular
radii (and thus mass) to better match real shape distributions and
to avoid crystallization. kn itself is chosen to be as stiff as possible
while still retaining a reasonable cost per time step, usually on the
order of 10−6 seconds.

3.3 Continuum Modeling
We model continuum granular regions as an elastoplastic material
with a Drucker-Prager plastic yield criterion. The evolution of the
system is governed by the conservation of momentum

ρ
Dv

Dt
= ∇ · 𝜎 + ρ fext , (7)

and the conservation of mass
Dρ

Dt
+ ρ∇ ·v = 0, (8)

where 𝜎 denotes the Cauchy stress tensor, D ·
Dt denotes the material

derivative, and fext denotes any external body forces (e.g. gravity).
We use a multiplicative decomposition of the deformation gradient
F = F eFp where F e and Fp denote the elastic and the plastic
component of the deformation gradient, respectively. We denote
the left Cauchy-Green strain by b = FFT .

Under small strains, the material behaves elastically. We employ
a simple strain energy density to model the elastic behavior. In 2D
the strain energy and Kirchhoff stress are given by

W =
κ

2

[
1
2 (J

2 − 1) − ln J

]
+

1
2 µ(Tr [b̄

e ] − 2), (9)

τ =
κ

2

(
J2 − 1

)
I + µ dev[b̄e ], (10)

where b̄e = det (be )−1/2 be is the volume preserving elastic left
Cauchy-Green strain and J = det (F ). In 3D, the strain energy den-
sity becomes W = 1

2κ
[ 1

2 (J
2 − 1) − ln J

]
+ 1

2 µ(Tr [b̄
e ] − 3) while

b̄e = det (be )−1/3 be . κ and µ are the bulk and shear moduli respec-
tively of the material. κ is chosen such that it is compatible with the
DEM stiffness according to §3.3.2 of [Kamrin 2008], and µ is chosen
to produce a Poisson’s ratio of 0.3.

To allow the granular medium to separate, we consider the medium
to be one-sided in the following sense: the granular medium can
resist compression, but not extension. We model this effect with a
free-flow mode, similar to Dunatunga et al. [2015]. When we de-
tect that the material is in extension, indicated by det[be ] > 1, we
project the strain to det[be ] = 1 by assigning be ← det (be )−1/2 be

(be ← det (be )−1/3 be in 3D). The net result is zero pressure when
the material is under extension.

We model plastic flow with the Drucker-Prager yield condition

Φ = s − αp ≤ 0, (11)

where s = ∥ dev[τ ]∥F is the magnitude of the shear stress (recall that
dev[X ] = X − 1

2 Tr[X ]I ), p = − 1
2 Tr[τ ] is the pressure (dev[X ] =
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X − 1
3 Tr[X ]I and p = − 1

3 Tr[τ ] in 3D), and α controls the angle
of repose. It often proves useful to express the yield in terms of
strain, in which case we find that Φ = µ∥ dev[b̄e ]∥F + α κ

2
(
J2 − 1

)
.

The Drucker-Prager yield criterion corresponds intuitively with the
notion of Coulomb friction in the discrete setting; the shear stress
(continuum analog of force in the tangential plane) is capped at the
magnitude of the pressure (continuum analog of the normal force)
scaled by a constant α (continuum analog of µ). When Φ ≤ 0, the
material behaves elastically. When Φ > 0, however, the material
sustains plastic shape change. Crucially, a Drucker-Prager treatment
of yield allows us to tune the angle of repose of a pile to match that
of a discrete element simulation.

We model the granular medium as perfectly plastic: all excess
yield is immediately converted into plastic deformation. We dis-
cretize the elastoplastic update rule for the strain Ûbe = ∇vbe +
be∇vT +Lvbe with the return mapping method [Simo and Hughes
1998]. The result is a predictor-corrector style update for the strain.
We first update be through Ûbe = ∇vbe + be∇vT , ignoring any
plastic flow. This predicted strain can now violate the yield con-
dition. To remove yield excess from be,∗, where ∗ denotes some
violating state, we impose two constraints on the plastic flow to
project the material to a violation-free state. First, the plastic granu-
lar flow should conserve volume, and the projected strain det[be,p ]
should satisfy det[be,p ] = det[be,∗]. Second, to satisfy the yield
condition, we seek Φ

(
τ

(
be,p

) )
= 0. We consider the flow to be in

the direction of the shear and we decompose the projected strain as
be,p = λ1I + λ2 dev[det[be,∗]].

Expanding the constraint Φ
(
τ

(
be,p

) )
= 0, we find:

Φ
(
τ

(
be,p

) )
= µ∥ dev[be,p ]∥F + α

κ

2 (J
2 − 1)

= µλ2∥ dev[be,∗]∥F + α
κ

2 (J
2 − 1).

(12)

Equating to 0 and solving for λ2, we conclude that:

λ2 = −
(
α
κ

2 (J
2 − 1)

)
/
(
µ∥ dev[be,∗]∥F

)
. (13)

Similarly, if we expand det[be,p ] we find
det[be,p ] = det[λ1I + λ2 dev[be,∗]]. (14)

In 2D, recalling that det[I + A] = 1 + det[A] + Tr[A], we have
det[I + dev[A]] = 1 + det[dev[A]]. Then, we arrive at

det[be,p ] = λ2
1 det[I + λ2

λ1
dev[be,∗]]

= λ2
1

(
1 +

λ2
2

λ2
1

det[dev[be,∗]]
)

= λ2
1 + λ

2
2 det[dev[be,∗]].

(15)

Equating to det[be,∗] and solving for λ1 we find:

λ1 =
√

det[be,∗] − λ2
2 det[dev[be,∗]]. (16)

In 3D, recalling that det[I +A] = 1 + det[A] + Tr[A] + 1
2 Tr[A]2 −

1
2 Tr[A2], we have det[I + dev[A]] = 1+ det[dev[A]] − 1

2 ∥ dev[A]∥2F .
Then, we arrive at

λ3
1 + λ

3
2 det[dev[be,∗]] −

λ1λ2
2

2 ∥ dev[be,∗]∥2F − det[be,∗] = 0. (17)

We employ Cardano’s method to analytically solve (17) and obtain λ1.
With λ1 and λ2 in hand, we are able to easily project be,∗ and enable
the plastic flow. See Algorithm 12 in the supplemental material for
a compact description of the overall projection procedure.

3.4 MPM Discretization
We simulate the plastic continuum medium using the material point
method [Sulsky et al. 1994]. Material properties are advected in a
Lagrangian fashion with a spatial sampling of material points, while
forces are computed on an Eulerian background grid.

We use a standard, explicit MPM integrator with a return-mapping
style treatment of plasticity [Yue et al. 2015]. While similar works
advocate for cubic-spline based nodal shape functions [Steffen et al.
2008; Stomakhin et al. 2013], we found these to be expensive to
compute in practice. As linear hat functions are known to cause
instabilities when material points cross grid boundaries [Jiang et al.
2016], we instead employ a version of the Generalized Interpolation
Material Point Method (GIMP) [Bardenhagen and Kober 2004; Gao
et al. 2017], which, conceptually, assigns a finite width to material
points to smooth the transition of the shape functions across grid
boundaries. In all of our tests, we set the GIMP width to the cell
width of the MPM grid divided by the number of MPM points per
cell dimension (i.e. a 3D simulation with a grid width of 1 with 2
points per cell dimension would have 8 total points per element and
each point would have a width of 0.5). We found GIMP to be both
stable and efficient. As we treat all interactions with boundaries
through a discrete particle model, no special consideration is needed
for boundary conditions within our material point formulation.

We summarize our MPM implementation in the supplemental
material. Note that we divide the MPM integrator into two phases for
reasons that we discuss in Section 3.6. Further note that in our MPM
implementation, we use a parameter β to interpolate between PIC
and FLIP velocity updates. To better conserve angular momentum
we desire a high degree of FLIP, and thus set β to a value between
0.95 and 1.0 for all simulations.

3.5 Hybridization
Having accounted for the velocity (and possibly position) update
from the equations of motion, we can interpret each system in
terms of forces-per-volume and then, within a finite volume element,
correct the velocities and positions to enforce coupling via (3) subject
to the constraintC . This allows us to interpret the constraintv1 = v2
in an average or homogenized sense [Bergou et al. 2007]: in the
reconciliation zone, the velocity of every discrete particle is forced
to agree with the interpolated velocity of the continuum. Let λk
represent the constraint force on the kth discrete particle. Given the
reconciliation zone, ΩR , the pth material point moves as

d

dt
qp = vp ,

d

dt
(wpMpvp ) =

d

dt
(wpMpv

∗
p )︸           ︷︷           ︸

unconstrained step

−
∑
k ∈ΩR

Γpkλk︸           ︷︷           ︸
constrained step

, (18)
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while the kth discrete particle moves as
d

dt
qk = vk ,

d

dt
((1 −wk )Mkvk ) =

d

dt
((1 −wk )Mkv

∗
k )︸                   ︷︷                   ︸

unconstrained step

+λk︸             ︷︷             ︸
constrained step

, (19)

wherev∗p (v∗k ) are the predictions from continuum (discrete) simu-
lation before coupling forces are added, and Γpk are material-point
to discrete-particle interpolation coefficients.

3.6 Hybrid Coupling Discretization
We now present the discretized, hybrid coupling algorithm that
follows from the previous discussion. Note that while general, im-
plicit equations of motion would require a non-linear Newton solve,
with explicit equations of motion, the coupled solve can be reduced
to a single linear solve with a predictor-corrector structure. See
Appendix A for a full derivation. We further observe that MPM
forces are defined on a background Eulerian grid, which provides
a natural scratch-pad on which to compute the constraint forces.
Concretely, a full hybrid time step begins by stepping the continuum
and discrete systems in isolation, omitting the advection steps, to
obtain the predicted momenta. In our implementation, we compute
a predictor discrete step by taking a full step of the discrete system
and discarding the position update. For the continuum system, we
split the full MPM step into two stages, where the predictor first
stage steps the system to just the instant that material point prop-
erties are rasterized to the gird. In the DEM force computation, we
weight each discrete spring force by 1 −w , evaluated at the corre-
sponding contact point, and each body mass by 1 −w , evaluated
at the center of mass. Likewise, in the MPM force computation, we
weight the stress and mass of each material point by w , evaluated
at the point location. We next assemble and solve a linear system to
constrain the velocities of the discrete and continuum simulations
in the reconciliation zone:

WcMc 0 Γc
0 WdMd −Γd
ΓTc −ΓTd 0



vn+1
c

vn+1
d
λ

 =

Wc

(
Mcv

n
c + h f

n
c
)

Wd

(
Mdv

n
d + h f

n
d

)
0

 , (20)

where Wc and Wd are diagonal matrices that contain the mass
weights for the continuum and discrete systems, Mc and Md are the
mass matrices,vc andvd are the velocities, and fc and fd are ex-
plicit forces from the continuum and discrete systems. Mcv

n
c +h f

n
c

and Mdv
n
d + h f

n
d are the predicted momenta of the continuum and

discrete systems, respectively, and solving the linear system gives
the corrected continuum and discrete velocitiesvn+1

c andvn+1
d . Γd

and Γc are defined such that ΓTd vd − ΓTc vc produces the residual
relative velocity of discrete bodies within the background velocity
field defined by the material point grid. Under this definition, Γd
reduces to the identity matrix, while each column of Γc contains
the weights that recover each discrete body’s center of mass from
the MPM grid’s basis functions. We compute Γc using the positions
of the discrete bodies and material points at the beginning of the
step. Note that we can restrict the size of this system to only the
degrees of freedom in the reconciliation zone. After solving the

linear system, we update the discrete velocities and advect the dis-
crete bodies along the corrected velocities, concluding the discrete
step, and we compute the latter stage of the material point step
using the new, constrained velocities, concluding the continuum
step. This concludes a full hybrid time step, the details of which are
summarized in Alg. 1.

3.7 Inexpensive Coupling via Grid vs. Grid Hybridization
While this method to compute coupling forces indeed works, a fur-
ther speedup is possible by defining a second background grid that
is co-located with the background MPM grid. The velocities of the
discrete bodies can be rasterized to this second grid as if they were
material points. The constraint matrices Γd and Γc now reduce to
the identity, and the system in (20) can be solved in closed form
(31) as shown in Appendix B. Crucially, the solution at each grid
node is independent of the other grid nodes, and takes the simple
form of an inelastic collision between two particles with masses and
velocities equal to those of the grid node (Alg. 3). This method to
compute hybridization forces is simple, robust, and trivially paral-
lelized. After solving this system, the discrete grid-based velocities
are mapped back to the discrete bodies in the same manner as MPM
points. We always employ this grid vs. grid hybridization technique,
and never directly solve the linear system (20).

3.8 Learning from Early Attempts
Before we settled on a penalty-based method [Cundall and Strack
1979] for our discrete simulation, we tested a hard-particle, impulse-
based approach [Kaufman et al. 2008]. Like our current version, we
made use of operator splitting and performed prediction-correction
style integration; we performed the impulse based and continuum
integration separately, and then corrected the velocities and po-
sitions with a coupling step. We found that this approach led to
overlap artifacts, however, where the discrete bodies in the recon-
ciliation zone slowly drifted into the corresponding continuum, as
the impulse-based approach was unable to fix the overlap between
grains caused by the correction step. This is due to the fact that the
corrector step may apply forces to the grains that cause motions
violating the hard-particle constraint. We tried to use spring-based
penalties and post-stabilization [Anitescu and Hart 2004a; Cline and
Pai 2003] to correct this overlap over time, but the addition of the
springs led to smaller time steps, eliminating the primary advantage
of the impulse-based model. The penalty-based discrete element
method we use now, on the other hand, can naturally fix the overlaps
caused by the coupling step and is a more physical model for grains
of known elasticity. Indeed, we find that our choice of the penalty-
based method together with the material point method and the
coupling procedure produces simulations without any observable
drift between domains in the hybrid zone.

3.9 Substepping the Discrete Simulation
The maximal stable time step of standalone DEM, which is decided
by the grain sizes, is smaller than that of standalone MPM, which
is decided by the background cell width. In the hybrid system, we
therefore seek to exploit MPM’s ability to take larger time steps than
DEM by substepping the DEM simulation with respect to MPM, i.e.
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by carrying out a number of DEM substeps for each MPM step. In all
examples we ran DEM at its largest stable time step, while we were
able to stably step MPM at ten times DEM’s time step when coupled,
i.e. ten DEM substeps for each MPM step. We observe instabilities if
we push the number of substeps beyond this threshold. We enforce
the hybrid coupling constraint during the MPM step. In effect, MPM
allows us to homogenize in both space and time. Details of hybrid
system with substepping are listed in Alg. 2.

Algorithm 1 Hybrid_Step
1: Copy_Positions_Of_Discrete_Bodies
2: Discrete_Step
3: Restore_Discrete_Positions
4: MPM_Step_First_Phase ▷ Alg. 20
5: Rasterize_Discrete_And_Continuum_Velocities ▷ Alg. 4
6: Hybrid_Constraint_Solve ▷ Alg. 3
7: Transfer_Constrained_Velocities_To_Systems ▷ Alg. 5
8: Update_Hybrid_Discrete_Positions ▷ Alg. 6
9: MPM_Step_Second_Phase ▷ Alg. 21

10: Update_Hybrid_State ▷ Alg. 9

Algorithm 2 Hybrid_Step_With_Substepping
1: Copy_Positions_Of_Discrete_Bodies
2: for i = 0 . . .num_substeps do
3: Discrete_Step
4: Accumulate_Discrete_Momentum_Changes
5: end for
6: Restore_Discrete_Positions
7: MPM_Step_First_Phase ▷ Alg. 20
8: Rasterize_Discrete_And_Continuum_Velocities ▷ Alg. 4
9: Hybrid_Constraint_Solve ▷ Alg. 3

10: Transfer_Constrained_Velocities_To_Systems ▷ Alg. 5
11: Update_Hybrid_Discrete_Positions ▷ Alg. 6
12: MPM_Step_Second_Phase ▷ Alg. 21
13: Update_Hybrid_State ▷ Alg. 9

Algorithm 3 Hybrid_Constraint_Solve
1: for i = 0 . . .num_дrid_nodes_in_reconciliation_zone do
2: pi ← wc,i ·mc,i ·vc,i +wd,i ·md,i ·vd,i
3: mi ← wc,i ·mc,i +wd,i ·md,i
4: vi ← 0
5: if mi , 0 then
6: vi ← pi/mi
7: end if
8: end for

4 HYBRID ORACLE
With a coupling method in place, a full hybrid simulation requires
three additional core features: an oracle to identify regions that can
be safely approximated as a continuum, a homogenization operator

Algorithm4 Rasterize_Discrete_And_Continuum_Velocities
1: for point ∈ Material_Points_in_Reconciliation_Zone

do
2: for node ∈ Stencil(point) do
3: w ← Weight(point, node)
4: node.mc += w · point.m
5: node.pc += w · point.m · point.v
6: end for
7: end for
8: for body ∈ Discrete_Grains_in_Reconciliation_Zone do
9: for node ∈ Stencil(body) do

10: w ← Weight(body, node)
11: node.md += w · point.m
12: node.pd += w · body.m · body.v
13: end for
14: end for
15: for node ∈ Grid_Nodes do
16: if node.md > 0 then
17: node.vd ← node.pd/node.md
18: end if
19: if node.mc > 0 then
20: node.vc ← node.pc/node.mc
21: end if
22: end for

Algorithm 5 Transfer_Constrained_Velocities_To_Systems
1: for point ∈ Material_Points_in_Reconciliation_Zone

do
2: point.v ← 0
3: for node ∈ Stencil(point) do
4: w ← Weight(point, node)
5: point.v += w · node.v
6: end for
7: end for
8: for body ∈ Discrete_Grains_in_Reconciliation_Zone do
9: body.v ← 0

10: for node ∈ Stencil(body) do
11: w ← Weight(body, node)
12: body.v += w · node.v
13: end for
14: end for

Algorithm 6 Update_Hybrid_Discrete_Positions
1: for body ∈ Discrete_Grains_in_Reconciliation_Zone do
2: body.p ← body.pprev + dt · body.v
3: end for

that is able to convert a discrete region of material to a continuum
region, and an enrichment operator that is able to synthesize discrete
grains in a manner consistent with the continuum.
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(A) (B) (C) (D)

(E) (F) (G)

Fig. 4. Initialization of a hybrid simulation: (A) We begin with a collection
of DEM grains. (B) We next locate a level set corresponding to a given low
density, here denoted as a black line. (C) Across the domain, we compute
the distance to the density threshold, indicated by lines in lighter shades
of red as the distance increases. (D) We select a user-tunable distance to
the density level-set that serves as the center of the hybrid “reconciliation"
zone. We denote this critical distance as a solid black line. (E) We extend the
hybrid zone along the distance field by a given half-width in each direction,
indicated by dotted lines. This hybrid reconciliation zone between the dotted
lines defines a zone where the DEM systemwill be coupled to the continuum
system. We homogenize the velocity and stress (see §4.2) for use in step
(G). (F) We delete all discrete grains that fall within the inner boundary of
the reconciliation zone. (G) We run the “avoid-a-void” algorithm of Yue et
al. [2015] from the outer boundary in to populate the region with material
points. The material point states are determined using the homogenized
velocity and stress computed in step (E) (see §4.2 for details).

4.1 A Continuum Oracle
Critical to our hybridization method is an oracle that is able to flag
regions of the simulation domain as safe for a continuum treat-
ment. Regions are unfit for a continuum treatment when one of any
number of conditions are satisfied. First, in regions of low pressure,
grains are more likely to separate from the material bulk and un-
dergo ballistic motion. Second, high strain rate gradients suggest
that the granular flow varies too rapidly to be safely represented as
a homogenized continuum [Dijksman and van Hecke 2010; Kamrin
2010; Koval et al. 2009]. Finally, in thin flows, grain-level dynam-
ics can dominate, leading to finite size effects (e.g., clogging) not
captured by local continuum models [Beverloo et al. 1961; Groupe-
ment de Recherche Milieux Divisés (GDR MiDi) 2004; Pouliquen
1999; Sheldon and Durian 2010]. We have found that the packing
fraction serves as an effective signal for these sources of fundamen-
tally discrete behavior. The emphasis on packing fraction is further
motivated by the fact that graphical fidelity should be retained on
the exterior of granular systems of interest, as it is this low packing
fraction exterior that is seen by an observer.

Our oracle begins by computing the packing fraction of the dis-
crete particle system on a uniform background grid. Note that only
discrete grains are considered when computing the packing frac-
tion, as continuum and hybrid regions are, by ansatz, considered
sufficiently dense. From this implicit representation, we extract
an isocontour corresponding to a critical, threshold packing frac-
tion Φρ (Fig. 4 (B)). We next compute the distance Φd (x) to this
threshold isocontour on a second, uniform grid (C), and define an
isocontour corresponding to a user specified distance ϕ0 as the cen-
terline of the reconciliation zone (D). We label a zone as hybrid if
the distance from the centerline is within a given half-width rh , i.e.

ϕ0 − rh ≤ Φd (x) ≤ ϕ0 + rh . Similary, we label a zone as continuum
if Φd (x) > ϕ0 − rh and a zone as discrete if Φd (x) < ϕ0 + rh (Alg. 7).

4.2 Homogenization and Enrichment
After updating the boundary between simulation domains, we are
faced with four possible transition scenarios: a previously hybrid
zone is now purely discrete, a previously hybrid zone is now purely
continuum, a previously discrete zone is now hybrid, or a previously
continuum zone is now hybrid. Note that after initialization, we do
not permit direct transitions from continuum to discrete regions or
vice versa. The transition away from a hybrid representation is quite
simple. For a hybrid region transitioning to a purely discrete region,
we simply delete all material points in the region. Similarly, for a hy-
brid region transitioning to a purely continuum region, we delete all
discrete grains in the region. The transition to a hybrid representa-
tion is more involved, however. A region that previously contained
only material points will require the insertion of discrete grains.
Likewise, a previously discrete region will require the insertion of
new material points. See Alg. 8.

The problem of adding samples to a dynamic simulation was
addressed in the context of the material point method with the
recently proposed avoid-a-void algorithm [Yue et al. 2015]. The
avoid-a-void method applies Poisson disc sampling to maintain
approximately constant material point distributions and to prevent
the formation of non-physical voids within a simulated material.
This technique is perfectly suited to our needs, where we need to
insert material points or discrete grains in regions of high material
density recently labeled as hybrid.

For discrete grains, the new position is determined by the Poisson
disc sampling procedure, while we draw the radius of new grains
from the same normal distribution used to generate the initial grain
radii. The initial velocity of new discrete grains is computed by aver-
aging the velocity of surrounding discrete grains and material points
within a radius of 6 (mean) grain diameters, with an exponential
falloff (Alg. 10). This window width is slightly above the minimal
size that recovers continuum-like quantities in a “granular volume
element” [Rycroft et al. 2009]. These nearest neighbor queries are
accelerated with a uniform background grid.

We first determine the positions of new material points with
Poisson disc sampling. Next, we compute the velocity, (normalized)
strain, and deformation gradient magnitude of new points with
homogenization. We utilize a regular grid to rasterize the velocity
of discrete grains; after rasterizing each discrete grain’s mass and
momentum to the grid (using the same rasterization procedure
as MPM), we divide the rasterized momentum by the rasterized
mass to determine each grid node’s velocity. Likewise, we estimate
the homogenized stress at grid nodes using a modification of the
Christoffersen formula [1981] that yields smooth stress fields via the
MPM shape functions, as described in Alg. 11. After computing the
homogenized velocities and stresses at nodes, we use the MPM shape
functions to evaluate the velocity and stress at the newly generated
material point positions. Finally, we convert the interpolated stress
to strain: from the definition of the Kirchhoff stress, we can relate
the Cauchy stress and the strain via 𝜎 = κ

2
(J 2−1)

J I +
µ
J dev[b̄e ].

By taking the trace of both sides, we obtain Tr[𝜎] = 3κ
2
(J 2−1)

J
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(in 3D) and solve for J . Next, by taking the deviator of both sides,
we obtain dev[b̄e ] = J

µ dev[𝜎]. Finally, b̄e is given in the form
b̄e = dev[b̄e ] + tI , and we solve for t with det[b̄e ] = 1.

We emphasize the importance of syncing the stress and strain dur-
ing homogenization to preserve volume. Previously, we initialized
new continuum elements to a stress-free state. This stress-free ini-
tialization caused the material to gain volume if the discrete grains
were between a gaseous and liquid state while separating, however.

4.3 Layered Hybridization
We often found it beneficial to only use the discrete treatment for
the topmost visible portion of a granular assembly. If the boundary
treatment (at the side walls and floor) with the continuum elements
is physically valid, and if the continuum elements are invisible from
the outside, this layered hybridization approach yields additional
speed improvements. We apply this approach to the bunny toss,
excavator, bunny drill, and tire examples in Section 5.

Algorithm 7 Identify_Hybrid_Zones
1: Φρ ← Discrete_Packing_Fraction_Isocontours (qd )
2: Φd ← Distance_to_Density_Isocontours

(
Φρ

)
3: continuum_zone (x) ← Φd (x) > ϕ0 − rh
4: discrete_zone (x) ← Φd (x) < ϕ0 + rh
5: hybrid_zone (x) ← ϕ0 − rh ≤ Φd (x) ≤ ϕ0 + rh

Algorithm 8 Update_Hybrid_Zones
1: Homogenize_Velocity_and_Stress (hybrid_zone) ▷ Alg. 11
2: Discrete_Avoid_a_Void (hybrid_zone) ▷ Alg. 12
3: Continuum_Avoid_a_Void (hybrid_zone) ▷ Alg. 16
4: Delete_Discrete_Grains (continuum_zone) ▷ Alg. 17
5: Delete_Continuum_Particles (discrete_zone) ▷ Alg. 18

Algorithm 9 Update_Hybrid_State
1: Identify_Hybrid_Zones
2: Update_Hybrid_Zones

5 RESULTS
We now test our method against a number of model problems.
In each of these examples, we employ uniform density partition
weights of 1/2. Unless otherwise stated, most simulation runs have
an MPM cell width to DEM mean grain diameter ratio of 2:1.

5.1 Granular Column Collapse
In Fig. 5, we simulate a collapsing column with pure DEM and with
our hybrid approach. Note the correspondence between the shapes
of both piles. Further observe that our hybrid method captures
detailed “fly away” effects – individual grains separate from the
overall bulk and roll away at the front of the collapse, a visually
important effect that would be difficult to capture with a purely
continuum model.

Algorithm 10 Create_Discrete_Grain
1: x← Position_from_Avoid_a_Void
2: r ← N

(
rmean , rsiдma

)
▷ Normally distributed radii

3: m ← 4
3πr

3, v← 0,W ← 0
4: for i = 0 . . .Nd do ▷ Iterate over discrete grains
5: if |xi − x| < 12 rmean then
6: w ← e |xi−x |

2/2r 2
mean

7: v← v +w vi ,W ←W +w
8: end if
9: end for

10: for i = 0 . . .Nc do ▷ Iterate over material points
11: if |xi − x| < 12 rmean then
12: w ← e |xi−x |

2/2r 2
mean

13: v← v +w vi ,W ←W +w
14: end if
15: end for
16: v← v/W

Algorithm 11 Homogenize_Velocity_and_Stress
1: for each body ∈ Discrete_Grains do
2: for node ∈ Stencil(body) do
3: w ← Weight(body, node)
4: node.m += w · body.m
5: node.momentum += w · body.m · body.v
6: end for
7: end for
8: for node ∈ Grid_Nodes do
9: if node.m > 0 then

10: homogenized_velocity← node.momentum/node.m
11: end if
12: end for
13: for each c ∈ collisions do
14: for node ∈ Stencil(c) do
15: w ← Weight(c, node)
16: fc ← c.collision_force ▷ Normal and friction forces
17: rc ← c.arm_vector, 𝜎c ←

1
2

(
fcrTc + rc f

T
c

)
18: homogenized_stress += w · 𝜎c/cell_volume
19: end for
20: end for

Algorithm 12 Discrete_Avoid_a_Void
1: for cell ∈ Hybrid_Zone do
2: for i = 0 . . . Max_Iters do
3: Create_Discrete_Grain() ▷ Alg. 10
4: end for
5: end for

Algorithm 13 Create_Continuum_Particle
1: x← Position_from_Avoid_a_Void

Encouraged by the agreement between the pure DEM approach
and our hybrid approach, we validated our hybrid model against
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Algorithm 14 Reassign_Hybrid_Continuum_Properties
1: for point ∈ Cell do
2: point.m← mpm_mass_per_cell/(#points ∈ Cell)
3: point.vol← cell_volume/(#points ∈ Cell)
4: point.v ← homogenized_velocity(point.x)
5: σ ← homogenized_stress(point.x)
6: point.strain← convert_stress_to_strain(σ )
7: end for

Algorithm 15 Determine_New_Inner_Continuum_Properties
1: for newly_sampled_point ∈ Cell do
2: point.m← gather_mass_of_extant_nghbr_pnts
3: point.vol← gather_vol_of_extant_nghbr_pnts
4: point.v ← interp_vel_of_extant_nghbr_pnts
5: point.strain← interp_strn_of_extant_nghbr_pnts
6: end for

Algorithm 16 Continuum_Avoid_a_Void
1: for cell ∈ Hybrid_Zone do
2: for i = 0 . . . Max_Iters do
3: Create_Continuum_Particle() ▷ Alg. 13
4: end for
5: Reassign_Hybrid_Continuum_Properties ▷ Alg. 14
6: end for
7: for cell ∈ Continuum_Zone do
8: for i = 0 . . . Max_Iters do
9: Create_Continuum_Particle() ▷ Alg. 13

10: end for
11: Determine_New_Inner_Continuum_Properties ▷ Alg. 15
12: end for

Algorithm 17 Delete_Discrete_Grains
1: for body ∈ Discrete_Grains do
2: if body ∈ Continuum_Zone then
3: delete (body)
4: end if
5: end for

the power-law scaling of the run-out distance δd = df −di reported
in the literature, where df is the distance from the left wall (for a
unilateral collapse like our study, or from the column center for a
bilateral collapse) to the center of mass of the foremost grain that
is connected to the main collection of grains, and di is the initial
column width (for a unilateral collapse, or the initial half-width for
a bilateral one), as in Fig. 5. Granular run-out in a column follows a
power law scaling as a function of the initial aspect ratioAR = hi/di
in both experimental [Balmforth and Kerswell 2005; Lube et al. 2005]
and numerical [Dunatunga and Kamrin 2015; Lagrée et al. 2011;
Mast et al. 2015; Staron and Hinch 2005] tests, where hi is the initial
height of the column. Running a series of run-out simulations over
a range of aspect ratios, we corroborate the previously reported
power law scaling. Below a critical aspect ratio, we observe a linear

Algorithm 18 Delete_Continuum_Particles
1: for point ∈ Material_Points do
2: if point ∈ Discrete_Zone then
3: delete (point)
4: end if
5: end for

Table 1. Simulation performance. Timings of our hybrid approach compared
to a purely discrete approach for different scenarios. All reported costs have
units of average seconds per time step. The hybrid cost includes both the
cost of MPM time evolution and the coupling solves. We take a constant
DEM time step of dt = 10−6 and a constant MPM time step of dt = 10−5.
We gathered all performance statistics on an Intel 3.5 GHz Core i7-4770K
with a single thread.

Simulation
Scene

DEM
Cost

Hybrid
Cost

Total
Cost

Speed
Boost

DEM
Grains

Silo, DEM 0.41 N/A 0.41 N/A 100,000
Silo, Hybrid 0.25 0.03 0.28 1.47× 78,538
Toss, DEM 0.620 N/A 0.620 N/A 120,000
Toss, Hybrid 0.164 0.193 0.357 1.74× 28,289
Drill, DEM 1.84 N/A 1.84 N/A 360,000
Drill, Hybrid 0.125 0.145 0.27 6.82× 42,933
Tires, DEM 3.60 N/A 3.60 N/A 588,320
Tires, Hybrid 0.54 0.51 1.05 3.43× 114,35

Discrete grains
Continuum regime
Reconciliation zone

di

hi

df

Fig. 5. Granular column: A collapsing column simulated with DEM (top)
and with our hybrid approach (bottom). Observe the nice agreement in the
final profile with our hybrid approach and the purely DEM approach.

run-out distance as a function of aspect ratio. Above this threshold,
we observe a second power law scaling.

As evident in Fig. 6, a pure discrete simulation captures the ex-
pected runout profile. Encouragingly, our hybrid method captures a
similar runout profile, with a clear turnover point. In the aforemen-
tioned experimental study by Lube, experiments showed that for
AR < 1.8, the runout profile could be described by a simple linear
relation: δd/di = α(AR). Lube found α = 1.2 while our simulation
data fits best with with α = 1.45. In regimes with AR > 2.8, the
runout distance was best described with a power law of the form
δd/di = β(AR)γ . Lube observed a best-fit with β = 1.9 and γ = 0.67.
In comparison, our data fits best with β = 2.05 and γ = 0.67. We
thus obtain a good quantitative match to experimental results.

Extending to 3D, we also obtain a good qualitative matchup of
the collapse in motion. Fig. 7 shows the motion of a discrete and
a hybrid column collapse. Again note the grains at the edge of the
runout, which the hybrid technique is able to capture.
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Fig. 6. Runout of a 2D granular column: Nondimensionalized runout dis-
tance, δd/di = (df − di )/di , vs aspect ratio, AR = hi /di . Like DEM, our
hybrid technique captures the two distinct regimes that Lube [2005] ob-
served in experiments. We perform a linear fit in the low-AR regime, and a
power-law fit in the high-AR regime.

Fig. 7. 3D column collapse: a column collapse simulated with DEM (left)
and with our hybrid method (right) at the same snapshots in time.

5.2 Silo Discharge
In Fig. 8, we simulate a silo that discharges grains using a purely
discrete approach and our hybrid approach. With our approach,
the oracle identifies the interior of the initial mass of grains as
a continuum. As grains exit the silo and the continuum region
falls towards the orifice, our method automatically converts the
continuum material to discrete material. As grains form a pile on
the ground, our method detects the formation of the sufficiently
dense portions of the pile and automatically converts discrete grains
to continuum material points in this area. The hybrid 2D hourglass
has a slightly faster flow rate than the discrete only counterpart. We
believe that the ability to control the coordination number for newly
sampled DEM particles would reconcile these flow rates. Generating
packings given constraints is an interesting avenue of future work.

We also simulate a hybrid silo discharge in 3D (Fig. 9). The hy-
brid approach is able to model ballistic motion and collisions after
grains flowing from the silo enter a "gaseous" state. This ability to
model contact is crucial for capturing the asymmetrical shape of
the column, as well as the ballistic bounces when grains impact
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t = 0.67t = 0 t = 1.33 t = 0.67t = 0 t = 1.33

Fig. 8. Silo discharge: A silo discharges grains with a discrete method (left)
and with our hybrid method (right).

Fig. 9. 3D silo discharge simulated with our hybrid approach: Left is a full
view of the discharging grains while right is a cutaway view.

Fig. 10. Hourglass experiment: Individual grains bounce off a sand pile,
violating the continuum assumption and requiring a discrete model. ©MIT

the container and the pile, both of which are observed in real-life
hourglasses. See Fig. 10.

MPM fails at simulating fly away grains, as the Particle-in-Cell
method handles collisions by homogenizing each Lagrangian parti-
cle’s velocity onto a background Eulerian grid and then transferring
back. This series of operations results in an effectively inelastic
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e = 0 e = 0.5 MPM

Fig. 11. Silo discharge (3D large orifice, r = 1.8): Our hybrid approach supports a range of restitution coefficients. Left: with 0 restitution, the flow looks
uniform. Middle: with e = 0.5, the flow appears more energetic, with multiple visible fly away grains. Observe that the MPM version of this simulation (right)
has both a less energetic flow, and fails to simulate grains bouncing away from the bulk whole. The MPM counterpart is simulated with sticky boundary
conditions on the bottom.

Fig. 12. Silo discharge (small orifice, r = 0.2): A silo discharges grains with a
discretemethod (left), our hybridmethod (middle), and a continuummethod
(right). Both the discrete and hybrid approach capture size-dependent clog-
ging effects, and all flow from the orifice halts. The continuum simulation,
in contrast, flows nonphysically.

collision among Lagrangian particles, i.e. with restitution coeffi-
cient e = 0. Note that this inelastic nature is independent of the
particle-grid transfer scheme, i.e. PIC, FLIP, or APIC.

In contrast, our hybrid approach handles the full range of resti-
tution coefficients from 0 to 1. In Fig. 11, we show a comparison
between e = 0 and e = 0.5. Notice that when e = 0, the hybrid
approach also fails to capture the detailed bouncing effects and has
a more uniform shape and flow profile.

Another advantage of our hybrid approach over a purely contin-
uum method is the ability to frictionally jam due to so-called finite
size effects. In Fig. 12, we simulate a silo discharge with a small
orifice width using a purely DEM algorithm, our hybrid algorithm,
and a purely continuum algorithm. Note that we use an MPM cell
width to DEM mean grain diameter ratio of 1:1 to more accurately
couple the hybrid region near the orifice. Our hybrid simulation,
like the purely DEM simulation, jams with the small orifice width,
as expected. On the contrary the continuum, regardless of the grid
resolution, fails to capture these finite size effects. Extra non-local
modeling is needed [Kamrin and Koval 2014].

5.3 Penetrometer Insertion
Similar to Yan et al. [2010] and Wellmann and Wriggers [2012],
we perform a hybrid simulation of a penetrometer insertion into
a bed of grains (Fig. 13). These simulations are difficult to perform
directly with standard continuum methods owing to the massive
plastic shape changes observed around the penetrometer tip. Unlike
previous works, we do not specify the region to be treated with
DEM a-priori. Instead, as the penetrometer advances into the bed of
grains, our hybrid method is able to enrich the region surrounding

Fig. 13. Penetrometer insertion: We insert a penetrometer into a bed of
grains with our hybrid algorithm (first four frames). As the penetrometer
enters the bed, our hybrid oracle identifies the region around the tip as
requiring a discrete treatment and enriches the simulation domain in this
area. As the simulation progresses, the continuum region eventually experi-
ences a topology change and splits in two. Examining an overlay of a hybrid
simulation (purple) on a purely discrete simulation (peach), we find the
resulting profiles to be in almost perfect agreement (rightmost frame).

the penetrometer, ensuring that it always interacts with the bed
through discrete grains. As the penetrometer is fully inserted into
the bed, the original single continuum region is split in two. Our
hybrid approach gracefully treats this topological change with no
extra machinery.

5.4 Bunny Toss
We initialize a bunny with non-zero translational and angular veloc-
ity and simulate the resulting collision with a packing of gumballs.
This high-speed bunny produces a splash upon impact with the gum-
balls before coming to rest. In Fig. 14, the top simulation has zero
restitution, while the bottom simulation has restitution of e = 0.5.
The larger coefficient of restitution leads to a simulation with a
more dynamic splash.

While DEM uses 120,000 grains to simulate this scene, our hybrid
approach only uses an average of 28,289 grains. In total, taking
into account of the cost of MPM and the coupling computation
(where again the MPM cell width is 2× the mean grain diameter),
our method is 1.74× faster than DEM (Table 1).

5.5 Excavator
In Fig. 15, we script an excavator to scoop gumballs from the same
container as the bunny toss. Our hybrid oracle robustly handles
topology changes in the simulation domain induced by the excavator.
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e = 0

e = 0.5

Fig. 14. The bunny crashes into a container of gumballs with different
coefficients of restitution using our hybrid method.

Fig. 15. We script an excavator to scoop gumballs out of a container.

As we employ the same gumball packing as the bunny toss in this
test, we obtain a comparable speedup to that example.

5.6 Bunny Drills
We aggressively insert and remove four scripted bunnies from a
pile of 360,000 grains (Fig. 1). While initially only the top surface is
represented as discrete grains, our method is able to dynamically
enrich the interior around the bunnies in response to their motion.
Our hybrid method obtains a similar visual result compared to the
pure DEM simulation, yet it uses 88% fewer discrete grains and is
thus 6.82× faster (See Table 1).

5.7 Tires on a Gravel Road
To test our method on a real world example, we simulate off-road
tires traversing a gravel road. The tires are given a constant angular
velocity around each of their axes, but are otherwise dynamically
simulated. The hybrid method is able to capture multiple effects
such as large splashes when fast rotating wheels collide with the
grains, as well as tires sinking into the pile of grains due to a large
density difference. While simulating this scene with a pure discrete
method requires 822,956 grains, our hybrid approach allows us to
simulate only a thin layer of discrete grains and the remainder is

continuum (Fig. 16 left). Here, the MPM cell width is 1.75× the mean
grain diameter. On average, the hybrid approach is 3.43× faster than
a purely discrete method (Table 1) .

5.8 Spinning Drum
An understanding of drum geometries is important in industrial
applications (e.g. mills, tumblers) and in the study of free-surface
flows [Groupement de Recherche Milieux Divisés (GDR MiDi) 2004].
To assess whether our algorithm is suitable for these geometries,
we fill a drum with grains to half its area, and impose a rotation to
the drum with a constant angular velocity. With a DEM simulation,
we observe nearly rigid grains near the base of the drum, a steadily
increasing flow towards the interior of the granular assembly, and
loosely packed grains near the free surface. As the transient phase
subsides, we observe the characteristic free-surface shape of these
experiments. Comparing the purely discrete results to those from
our hybrid algorithm (Fig. 17), we find the profiles to be in good
agreement throughout the simulation. Because our hybrid algorithm
treats regions near surfaces with discrete grains, we do not require
any additional machinery to handle the drum boundary condition
beyond that from the discrete simulation. Like the discrete simula-
tion, our hybrid algorithm is also able to capture free flight fly away
grains near the top of the domain.

5.9 Speedup Study
We seek to quantify the speedup we are able to obtain from the
hybrid method over a pure discrete simulation. In order to do this,
a chute-flow geometry is taken, as seen in Fig. 18. Grains are ini-
tialized in a column and are then tilted at an angle θ relative to the
horizontal, with gravity applied. Periodic boundary conditions are
then enforced, allowing for a continual flow of grains down-slope.
Three factors are adjusted: the initial total number of grains Ni be-
fore hybridization, the fraction of DEM left after the hybridization
F , and the hybrid grid size (identical to the MPM grid size here) H .
A parametric sweep adjusting these three variables allows for the
construction of a phase plot, which shows for a given Ni , when a
pure discrete simulation with Ni grains is faster or slower relative
to a hybrid simulation initialized with Ni grains but with different
F and H . Note that the geometry is kept fixed for all simulations,
so that increasing or decreasing Ni means decreasing or increasing
the average grain diameter.

Ni ranges from 1,000 grains up to 156,000 grains, F ranges from
0.07 to 0.89, and H ranges from 0.0025 to 0.000625. Cell width to
mean grain diameter ratios thus range from 19:1 to 0.4:1. Fig. 19
displays phase plots over different values ofH . AsH decreases, more
elements are hybridized, and so computational costs associated with
hybridization increase. However, even for the most refined grid, a
speedup can still be obtained with a reasonable F for a simulation
requiring 40,000 grains or more. It can be seen from Fig. 19 that a
speedup on the order of 12× can be obtained. While it may seem
that increasing the resolution (thus decreasing H ) results in a decay
of the maximum speedup obtained, one can exploit a characteristic
of a smaller H : with smaller H , a smaller F can be obtained.

Looking at the relationship between H and F from a different
perspective, an analysis of the speedup for layered hybridization
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Fig. 16. Simulations of tires traversing a bed of gravel. Left: A render of the initial condition (boundary condition not shown), with a tire poised to race across
the bed of grains. Notice the layered hybridization employed here. Center: Tires with different angular velocities but equal densities. Left to right the tires
rotate at 1000 rad/s, 100 rad/s, and 10 rad/s. The 1000 rad/s tire produces a large granular splash while the 10 rad/s tire produces almost no splash. Right: Tires
of different densities, but with the same angular velocities. Left to right the tires have 5×, 2×, and 1× the density of gravel. As the tires traverse the system, the
larger density tires sink into the gravel.

t = 0 t = 0.167 t = 0.333 t = 0.5 t = 0.667

Fig. 17. Spinning drum: We rotate a drum filled halfway with grains using
DEM (top row) and using our hybrid algorithm (bottom row). As the system
evolves, observe that the shape of the free surface obtained with our hybrid
method agrees with that of the purely discrete method.

g

θ θ

Fig. 18. Periodic chute flow: We set a granular packing at an angle θ with
periodic boundary conditions to simulate flow down a chute.

in 2D can be conducted from the geometry of the problem (see the
supplemental material for a detailed derivation). Letting CD be the
computational cost of a discrete grain, CE the cost of enrichment
for a hybrid cell, CC the cost for a continuum element, and A the
effective total number of grains (average number of grains per cell
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Fig. 19. Phase plots: Phase plots for H = 0.0025 (top left), H = 0.00125
(top right), H = 0.00083 (bottom left), and H = 0.000625 (bottom right).
Red denotes regimes where our hybrid scheme is faster while blue denotes
regimes where DEM is faster.

multiplied with the number of cells containing grains), we obtain
the following expression for the total timeTH for a complete hybrid
iteration and total time TC for a pure discrete simulation:

TH = CEhN
2 +CD

(ND + NH )N

hN 2 +CC (hN − ND )N ,

TC = CDA.
(21)

A reduction ratio RA can then be defined between the compu-
tational time of a hybrid simulation and an equivalent discrete
simulation of A grains:

RA =
TH
TC
=
CEhN

2

CDA
+
CD (ND + NH )N

hN
+
CC (hN − ND )N

CDA
.

(22)
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Minimizing RA results in the largest speedup, and we can find
the optimal N giving the largest speed up as:

N =

(
CDA

h2(CE +CC )

)1/3
. (23)

The key insight is that if N is chosen in the manner shown above
in relation to A, then as A → ∞, RA → 0, which means that
increasing speedups can be had for increasing grain numbers. This
is an extremely useful property, and serves to highlight the potential
of our hybrid method to tackle problems bridging micro/mesoscale
causes to macroscale effects.

For the sugar coated hybridization method in 3D described in
Section 4.1 and the layered hybridization method in 3D described in
Section 4.3, we obtain the best speedups if N scales withA according
to N ∝ A1/4. Then as A → ∞, RA → 0. See the supplemental
material for the detailed derivation.

It is important to note that N scales with A in the power of 1/4
(1/3 in 2D), not 1/3 (1/2 in 2D). An intuitive explanation is that if
we refine both the discrete and continuum elements equally (this
corresponds to settingN ∝ A1/3 (N ∝ A1/2 in 2D)) while keeping the
discrete layer thickness to a minimum, then the discrete computation
time will scale as N 2 (N in 2D) whereas the continuum will scale
as N 3 (N 2 in 2D), so eventually the continuum computation time
will dominate, and we will hit a bound. However, if we refine them
differently and maintain a balance between the two (i.e., setting N ∝

A1/4 in 3D and N ∝ A1/3 in 2D), then the acceleration continues.

5.10 Core Scaling
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2.2To study how our code paral-
lelizes, we conducted a test with
the bunny drill. We ran both a
pure DEM and a hybrid simula-
tion with increasing core counts.
For each core count, we ran each
simulation for two hours of wall
clock time and measured the
number of completed time steps. As evident in the inset, both DEM
and our hybrid method do parallelize, albeit with sub-linear scaling.
We note that at the time of this test, many routines in the code were
not fully parallelized, and a complete refactoring with parallelization
in mind would greatly improve scaling.

6 CONCLUSIONS AND FUTURE WORK
We have presented a theoretical framework for coupling a contin-
uum model of a granular material to a discrete model. To develop
this framework, we have proposed a method to partition a granular
material into two distinct but overlapping systems. By modeling
one system with a discrete model, and one system with a contin-
uum model, we arrive at a hybrid treatment for a granular material.
We then presented a discrete version of this framework able to ac-
commodate a variety of integrators, and derived an explicit hybrid
integrator that couples a material point simulation of a continuum
to a discrete element simulation. We have demonstrated preliminary
hybrid simulations with this integrator in settings that experience
both large plastic shape changes and topology changes.

We are interested in extending our approach to treat both sys-
tems implicitly. The coupling framework naturally extends to other
integrators, and a fully implicit approach promises significant per-
formance improvements when integrating stiff systems, including
granular materials. As contact dynamics models are implicit, an ex-
tension to implicit integrators would allow us to treat these models
as well. Improvements are possible to our approach by constraining
the angular momentum of the discrete system: if a grain with non-
zero angular momentum and no active contacts is embedded in the
hybrid zone, it will spin in place until it comes back into contact
with the discrete system. While there is no notion of point-wise an-
gular momentum in a continuum, certain discretizations, including
the Affine Particle in Cell method, track angular momentum-like
quantities, to which we could constrain the angular momentum.
We are also interested in refining and exploring the limits of our
methodology for detecting regions safe for homogenization and
our methodology for resampling regions as the boundaries between
continuum and discrete evolve. While we currently use uniform
density weights of 1/2, we are interested in exploring how the use
of smoothly varying weights might change the simulation results.
In particular, our use of non-smooth weights could cause artifacts
when analyzing wave propagation in granular systems. Currently,
we do not explicitly control the coordination number of the newly
inserted DEM particles in our enrichment. Generating packings
with constraints is an interesting direction for future work.

While we are primarily concerned with discrete phenomena near
the free surface of a system, it would be interesting to explore how
to capture discrete effects in the interior. At present we are not able
to capture internal shear banding, but extensions to our oracle could
allow for enrichment in interior regions to produce these effects.
Finally, our method does not model discrete force chains in the
interior domain. While this is not a major approximation, as force
chains homogenize into smooth stress fields over a window of a
few grain diameters in 3D, it would be interesting to explore how
to resolve these in the interior regions.
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A DERIVATION OF THE PREDICTOR-CORRECTOR
HYBRID TIME INTEGRATOR

Consider the generic (discretized) systemsGc andGd coupled through
constraints C . The state at the next time step (denoted by the 1 su-
perscript) is given by parameters that satisfy:

Gc

(
v1
c ,λ

1
)
= 0, (24)

Gd

(
v1
d ,λ

1
)
= 0, (25)

C
(
v1
c ,v

1
d

)
= 0. (26)

Note that while theG systems can be explicit or implicit, we presume
that the constraints are implicit and thus evaluated at the end-of-
step state. We omit x for clarity, noting that for typical integrators
of interest x can be expressed in terms ofv .

A Newton algorithm for solving this system takes the form of
Alg. 19. The linear system solved at each iteration is given by:

∂Gc
∂v1

c
0 Γc

0 ∂Gd
∂v1

d
−Γd

ΓTc −ΓTd 0



∆vc
∆vd
∆λ

 =

−Gc
−Gd
−C

 . (27)

To arrive at our hybrid integrator, first note that if both integrators
are explicit, the nonlinear solve will reduce to a single linear solve,
with ∆vc = v

1
c −v

0
c and ∆vd = v

1
d −v

0
d . Next, observe that if both

integrators are explicit, ∂Gc/∂v1
c = Mc and ∂Gd/∂v1

d = Md . Finally,
we have the choice of initial iterate in Alg. 19. If we set vc,0 = 0,
vd,0 = 0, and λ0 = 0, the linear system reduces to that of (20),
revealing the predictor-corrector structure of the method.

B DERIVATION OF THE GRID VS. GRID HYBRID FORCE
COMPUTATION

When constraining the velocities of co-located grids to match, the
constraint matrices Γc and Γd in Eq. (20) reduce to identity, giving

Algorithm 19 Coupled_Step
(
v0
c ,v

0
d

)
1:

(
vc,0,vd,0,λ0

)
← Generate_Initial_Iterate

2: for k = 0 . . . Max_Iterations do
3: Gc,k ← Gc (vc,k ,λk ) ▷ RHS
4: Gd,k ← Gd (vd,k ,λk )
5: Ck ← C(vc,k ,vd,k )

6: Residual←
��Gc,k ,Gd,k ,Ck

��
∞

▷ Termination check
7: if Residual ≤ ϵ then
8: Break
9: end if

10: ∂Gc
∂v1

c k
←

∂Gc
∂v1

c
(vc,k ) ▷ LHS

11: ∂Gd
∂v1

d k
←

∂Gd
∂v1

d
(vd,k )

12: (∆vc ,∆vd ,∆λ) ← Solve

(
Gc,k ,Gd,k ,Ck ,

∂Gc
∂v1

c k
,
∂Gd
∂v1

d k

)
13: vc,k+1 ← vc,k + ∆vc
14: vd,k+1 ← vd,k + ∆vd
15: λk+1 ← λk + ∆λ
16: end for

the system of equations:
WcMcv

n+1
c + λ =WcMcv

∗
c , (28)

WdMdv
n+1
d − λ =WdMdv

∗
d , (29)

vn+1
c = vn+1

d . (30)

Substitutingvn+1
c forvn+1

d in Eq. (28), adding Eq. (28) and Eq. (29),
and solving forvn+1

d , we find that:

vn+1
c = vn+1

d = (WcMc +WdMd )
−1

(
WcMcv

∗
c +WdMdv

∗
d

)
. (31)

For diagonal mass matrices, each degree of freedom can be solved
for independently, and the formula reduces to an inelastic impact
between two particles in one dimension.

C MPM TIME STEP BREAKDOWN
Please see the supplement for detailed MPM pseudocode.

Algorithm 20 MPM_Step_First_Phase
1: Rasterize_Mass_And_Momentum_To_Grid
2: Compute_Stress_At_Points
3: Compute_Forces_On_Grid
4: Update_Momentum_On_Grid

Algorithm 21 MPM_Step_Second_Phase
1: Lumped_Mass_Velocity_Update_On_Grid
2: Compute_Velocity_Gradient_At_Points
3: Elastic_Prediction_At_Points
4: Plastic_Correction_At_Points
5: Update_Velocities_At_Points
6: Update_Positions_At_Points
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