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Fig. 1. We (a–c) configure dam-break setups and (d) perform experiments for real world fluid-like material and employ optimizations via simulations to
estimate the Herschel–Bulkley material parameters. (e) The estimated parameters are ready for reproducing intriguing behaviors of real world materials.

We estimate the three Herschel–Bulkley parameters (yield stress 𝜎Y, power-
law index 𝑛, and consistency parameter 𝜂) for shear-dependent fluid-like
materials possibly with large-scale inclusions, for which rheometers may
fail to provide a useful measurement. We perform experiments using the un-
known material for dam-break (or column collapse) setups and capture video
footage. We then use simulations to optimize for the material parameters.
For better match up with the simple shear flow encountered in a rheometer,
we modify the flow rule for the elasto-viscoplastic Herschel–Bulkley model.
Analyzing the loss landscape for optimization, we realize a similarity relation;
material parameters far away within this relation would result in matched
simulations, making it hard to distinguish the parameters. We found that by
exploiting the setup dependency of the similarity relation, we can improve
on the estimation using multiple setups, which we propose by analyzing the
Hessian of the similarity relation. We validate the efficacy of our method
by comparing the estimations to the measurements from a rheometer (for
materials without large-scale inclusions) and show applications to materials
with large-scale inclusions, including various salad or pasta sauces, and
congee.
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1 INTRODUCTION
Fluid-like foods are common in our daily life, yet they span a wide
material space: for example, water, orange juice, and comsommé
are perhaps at the thin end, which flow smoothly; French dress-
ing, syrup, and tartar sauce are viscous and stick to other foods,
while mayo, mustard, guacamole, wasabi, and pâté are thicker and
more like a solid. Sesame dressings, salsa sauce, and ragú sauce are
mixtures of clearly visible solid inclusions and fluids.

Most of these fluid-like foods are non-Newtonian; they may have
a yield stress so that they behave like an elastic solid under low
applied forces and start to flow when the applied forces become
large enough, as well as a shear-dependent viscosity so that the
magnitude of the viscosity may increase (shear-thickening) or de-
crease (shear-thinning) as the applied forces are increased. These
non-Newtonian properties are nature of complex fluids, giving them
various functionalities that we make use of everyday: a food is easier
to swallow if it is less viscous or shear-thinning (viscosity decreased
when being swallowed); a pâté should stay in shape on a plate while
flow easily when taken on a knife and smeared over a bread.

The widely varied material properties in fluids [Barnes 2000] are
also common and utilized in industry, including cosmetics, pharma-
ceuticals, and lubricants. The acquisition of the material properties
is important for maintaining stable product quality1, designing new
products with desired material properties, as well as for reproducing
photo-realistic animations.

1For example, the production of ketchup in a stable quality needs to account for the
variations in thematerial property of the tomato pastes due to cultivation and processing
conditions [Bayod et al. 2008].
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Despite the importance of material property acquisition, the tech-
nologies available nowadays are still not general enough for a variety
of our daily materials. Aiming at accurate measurements, we have
devices called rheometers, where the accuracy comes at the cost of
applying a well-controlled, idealized flow to the specimen. To pre-
vent (non-ideal) secondary flows, this usually means the specimen
is put in a narrow gap, limiting the particle size of the specimen to
be smaller than 5–20 µm [Whaley et al. 2019], excluding materials
with large (millimeter) scale inclusions, like sesames in a dressing or
diced pancetta in a pasta sauce. Recovering an ideal flow or perform-
ing post-process corrections requires material-dependent design
of equipment or expert knowledge; there is no rheometer proved
to work for a variety of large-scale inclusions to our knowledge.
In addition, a rheometer is usually expensive (like 50k US dollars)
and not easily available for daily use [Nagasawa et al. 2019]. On
the other hand, recent development in video-based estimation tech-
niques (together with optimization over simulations) aims at the
easiness of use and allows for flows in the wild (as opposed to the
idealized flows), but the easiness usually comes at the cost of a
simplified material model, e.g., purely elastic [Wang et al. 2015] or
purely Newtonian [Takahashi and Lin 2019].

Our work is on the line of the latter video-based estimation tech-
niques, and we extend the work of Takahashi et al. [2019] to handle
non-Newtonian fluids with possibly stationary distributed large-scale
inclusions, meaning that the inclusions (if exist) are uniformly dis-
tributed so that the material as a whole can be viewed as a homoge-
neous continuum (e.g., congee and sesame dressings). This modeling
assumption is useful for representing and simulating various fluid-
like foods, including those seemingly inhomogeneous ones, listed at
the beginning of this section, via a standard continuum mechanics
approach (such as MPM [Stomakhin et al. 2013; Sulsky et al. 1994,
1995]) without effort for simulating each inclusion independently.

We estimate the constitutive model of the material flow, described
by the relation (called flow curve) between the shear stress 𝜎s (the
shear component of the Cauchy stress) and shear rate ¤𝛾 : 𝜎s = 𝑓 ( ¤𝛾).
Formanymaterials, including fluid-like foods [Nagasawa et al. 2019],
water-clay mixtures [Maciel et al. 2009], debris flow [Coussot and
Piau 1995; Pellegrino and Schippa 2018], and even fabric–water mix-
tures in washing machines [Loyola et al. 2018], to just list a few, the
flow curves can be fitted by the Herschel–Bulkley model [Herschel
and Bulkley 1926],

𝜎s = 𝜂 ¤𝛾𝑛 + 𝜎Y, (1)

where 𝜎Y is the yield stress, 𝑛 is the power-law index, and 𝜂 is the
consistency parameter. The Herschel–Bulkley model encompasses
several important classes: setting 𝑛 = 1 recovers the Binghammodel,
setting 𝜎Y = 0 recovers the power law model, and setting both
𝜎Y = 0 and 𝑛 = 1 recovers the Newtonian model. We estimate the
three parameters 𝜂, 𝑛, and 𝜎Y of the Herschel–Bulkley constitutive
relation (1), assuming those are independent of its flow history (or in
other words, we assume the material is non-thixotropic). We limit the
search scope of the parameters to the material space 𝔐 := {10−4 ≤
𝜂/(Pa s𝑛) ≤ 30, 0.3 ≤ 𝑛 ≤ 1.0, 0 ≤ 𝜎Y/(Pa) ≤ 40}2. We limit
2The search space is determined such that it covers a wide range of our daily materials
(as we demonstrate in the paper), while excluding materials that do not flow with our
experiment setups.

ourselves to shear-thinning materials, due to the limited availability
of well-homogenized shear-thickening materials for testing. We
assume that the bulk and shear moduli satisfy 𝜅 ≥ 104 Pa and
𝜇 ≥ 103 Pa, respectively. We do not estimate these elastic moduli
nor require their precise values to be known a priori; our discussion
(§ 4) and results (§ 7) show that we can still estimate the parameters𝜂,
𝑛, and 𝜎Y (i.e., our method exclusively estimate the three parameters
𝜂, 𝑛, and 𝜎Y).

To simulate a Herschel–Bulkley material, we modify the elasto-
viscoplastic Herschel–Bulkleymodel [Nagasawa et al. 2019; Yue et al.
2015] to better match the scalar constitutive relation (1) seen by a
rheometer. We also give a comprehensive understanding between
an elasto-viscoplastic Herschel–Bulkley model (i.e., a solid model)
and a Herschel–Bulkley fluid model.

Unlike purely Newtonian fluids, where the fluid is solely charac-
terized by a single viscosity parameter 𝜂, the multiple parameters
and non-linearity in a Herschel–Bulkley material may result in dif-
ferent parameter sets to end up with an almost identical behavior
for a given setup. This defines a similarity relation between fluids
with different parameter sets, a concept analogous to the similarity
relation in rendering for participating media [Zhao et al. 2014].

An interesting question is whether we can further pin down the
material parameters by, e.g., making use of multiple videos taken
for different setups, and if yes, how to appropriately choose such
setups. Our answers to these questions are positive. We found that
although it is hard to directly analyze the similarity relation for the
simulated results, it is possible to analytically consider the similarity
relation for the so-called plane Poiseuille flow [Poiseuille 1840] of
a Herschel–Bulkley fluid, which allows for a differential analysis
between different setups of the plane Poiseuille flow and the degrees
of ambiguity in the Hershcel–Bulkley parameters. The insight from
this differential analysis can be transferred to propose additional
setups in the video-based rheometry (ViRheometry).
We use the dam-break (or column collapse) setups to perform

experiments to allow for materials with large-scale inclusions, as
well as for the easiness of preparing different setups by changing
their width and height. We designed our setups using only off-
the-shelf materials with minimum necessity on the control of the
experiments, for the accessibility to non-expert (graphics) users. We
use footage at the beginning of the flow in a short time window of
1/3 seconds (before the material spreads widely) to minimize the
effect of surface tension, which we ignore in our simulation3.

We validate the efficacy of our method by comparing the estima-
tions to the measurements from a rotational rheometer (Figures 13
and 11) and show applications to materials possibly with large-
scale inclusions, including various salad or pasta sauces, and congee
(Figures 1 and 12).

2 RELATED WORK

2.1 Physical Measurements
There are a variety of methods (typically using a rheometer) for phys-
ical measurements of the flowing properties of the target material
(see reviews by, e.g., Macosko [1994], Barnes [1989], Larson [1998],

3We note that ignoring the surface tension can be problematic depending on the
simulation scale.
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Dogan and Kokini [2006], Mezger [2012], and Zheng [2019]). To
analyze viscoelastic behaviors, one can perform oscillatory tests. An
established class of such measurements is the small amplitude oscil-
latory shear (SAOS) (see the review by, e.g., Whaley et al. [2019]),
which is limited to linear viscoelasticity, and hence not suitable
for large shear deformation. Extensions to nonlinear viscoelasticity
called large amplitude oscillatory shear (LAOS) (see the review by,
e.g., Hyun et al. [2011]) have been actively researched, but a material-
independent framework has not been established. A typical way to
measure the response of a large shear flow is instead to perform
steady-shear tests, which are designed to measure multiple flow con-
ditions under different strain rates, necessary for non-Newtonian
fluids to account for their rate-dependency.
In a steady shear test, the effective viscosities are assessed by

putting the specimen in a gap realizing a laminar flow with a con-
trollable strain rate, followed by measuring the required shear stress
for achieving the flow. Such a laminar flow can be realized by drag
flows (e.g., Couette type rotational rheometers [Couette 1890]) or
pressure-driven flows (e.g., capillary (or pipe) rheometers initiated
independently by Hagen [1839] and Poiseuille [1840]). For an ac-
curate measurement, it is important 1) to avoid secondary flows
or Taylor vortices for an ideal laminar flow, as well as 2) to reduce
the material dependencies in the strain profile. If these conditions
are met, the effective viscosities can be identified in absolute phys-
ical units, enabling absolute measurements, giving rise to the flow
curves (relations between the stress and strain rate), which can be
then fitted using prescribed constitutive models (e.g., the work of
Mullineux [2008] and Magnon and Cayeux [2021]). For satisfying
these conditions, the ideal apparatuses (e.g., for a cone-and-plate or
parallel-plate rotational rheometer [Mooney and Ewart 1934]) come
with a narrow gap (at the order of millimeter to a few centimeters),
excluding materials with millimeter-scale large inclusions.
Although devices not fulfilling the above conditions (including

many viscometers and rotational rheometers used with certain types
of geometries, e.g., a wide gap) only return device-specific viscosity-
related indices for non-Newtonian fluids, they are still useful for
comparing the flowing behavior relative to a canonical reference, al-
lowing for relative measurements. A popular example is the Bostwick
consistometer (developed by E. P. Bostwick around 1938 [Eolkin
1957; Perona 2005]), a device much simpler and less expensive com-
pared to rheometers. A Bostwick consistometer consists of a rect-
angular container with a gate to allow one to perform a simple
dam-break test and measure the distance the specimen flows in a
given time interval.

There are studies trying to understand the flow in a measurement
device, via, e.g., theoretical analyses [Milczarek andMcCarthy 2006],
numerical simulations [Savarmand et al. 2007], or tomographic
techniques [Choi et al. 2002; McCarthy and McCarthy 2009], to
correlate the measurements with material parameters (e.g., for a
power law [Milczarek and McCarthy 2006] or a Herschel–Bulkley
model [Loyola et al. 2018; McCarthy and McCarthy 2009]), or to
validate or build customized wide-gap rheometers (e.g., the work
of Coussot and Piau [1995], Schatzmann et al. [2009], Heirman et
al. [2008] and Loyola et al. [2018]). Like these work, assessments of
the validity usually needs expert knowledge and/or the understand-
ing of the flow per setting.

On the line of the research on the above assessments, Sao et
al. [2021] proposed an apparatus that uses ultrasonic and laser sen-
sors to measure the depth and velocity of a steady flow down a slope
to estimate the Herschel–Bulkley parameters of the flow. Compared
to their approach, our setting is much more conventional; we do
not need to maintain a steady flow nor do we need the ultrasonic
and laser sensors.

2.2 Video-Based Estimation
Video-based estimation aims at the acquisition of material proper-
ties by using usually simple, convenient, and inexpensive settings
for possible complex material behaviors (e.g., inhomogeneous strain
rates), typically in conjunction with accurate physical modeling of
an a priori specified material model; this is in contrast to physical
(absolute) measurements, where usually sophisticated settings are
used to constrain a simple material behavior (e.g., a laminar flow),
together with minimum assumptions on the material model. Such
an estimation at a high level typically solves an inverse problem via
optimization, a framework widely adopted in mechanical engineer-
ing for estimating material parameters for constitutive equations
from observed quantities (e.g., the work of Mahnken [2004]), but
methods in graphics focus more on non-ideal objects in the wild
(e.g., complex shapes and/or material behaviors).

Previous methods in graphics have focused on, e.g., capturing
rigid-body dynamics [Bhat et al. 2002], collisions [Monszpart et al.
2016], frictional contacts [Rasheed et al. 2021], elastic deforma-
tions [Bickel et al. 2009;Wang et al. 2015], and viscosities [Takahashi
and Lin 2019]. We extended the method by Takahashi et al. [2019]
for Newtonian fluids to non-Newtonian materials. Concurrent to
our work, Zhang et al. [2023] proposed using a monocular video
together with a setup injecting the specimen from a nozzle to esti-
mate parameters for non-Newtonian materials. By using multiple
dam-break setups in our method, we can alleviate inclusions getting
clogged in the setup, as well as reduce the indeterminacy of the
estimated parameters. Further, we provide validations (for materials
without inclusions) using a rotational rheometer.

2.3 Machine Learning Constitutive Models
There have been methods using machine learning to learn the con-
stitutive models for elasticity and plasticity, e.g., the work of Vlassis
and Sun [2021], As’ad et al. [2022], Koeppe et al. [2022], and Li et
al. [2022]. We note that the input and goal in these works are in
general different from ours. They learn the constitutive relation
from strain-stress data or simulated data, in order to obtain a macro-
scopic model from data in microscopic scales, or to accelerate the
simulations. In contrast, ours takes a few real footage as input and
returns the material parameters in order to reduce the manual work-
load needed for parameter tweaking. In addition, there are methods
learning constitutive models using observations [Huang et al. 2020;
Ma et al. 2023; Wang et al. 2020]. Compared to them, our method
handles rate-dependent (non-Newtonian) rheology.
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3 PROBLEM SETTING

3.1 Estimation as Optimization
Suppose thatwe have amaterial with a set of ground truth (Herschel–
Bulkley) parametersM★ = (𝜂★, 𝑛★, 𝜎Y★)⊤ unknown to the user, and
that we sequentially perform a set of physical experiments with
known setups4 S := {S𝑗 }, 1 ≤ 𝑗 ≤ 𝑁 . For each setup, we take a
videoV★(M★; S𝑗 ) to record the flowing behavior of the material.
Now, if we have a guess M for the material parameters, we can run
a simulation with the same setup S𝑗 to obtain the resulting video
V(M; S𝑗 ), and measure the difference 𝛿 (V(M; S𝑗 ),V★(M★; S𝑗 ))
between the videos, using some error metric 𝛿 (·, ·) described soon.
The idea is then to figure out the appropriate parameter set M̂ that
minimizes the loss L(M,M★;S):

M̂ = argmin
M
L(M,M★;S) = argmin

M

1
𝑁

𝑁∑︁
𝑗=1
L(M,M★; S𝑗 )

= argmin
M

1
𝑁

𝑁∑︁
𝑗=1

𝛿 (V(M; S𝑗 ),V★(M★; S𝑗 )) . (2)

Following Takahashi et al. [2019], we define difference 𝛿 (·, ·) be-
tween the videosV(M; S) andV★(M★; S) to be the averaged differ-
ence between their silhouettes. Let {I𝑓 (M; S)} and {I𝑓 ★(M★; S)} be
the image sequences constituting the videosV(M; S) andV★(M★; S),
respectively. Given an image I𝑓 or I𝑓 ★ from the video as the input,
a silhouette extraction filter 𝑠 (·) removes the background, extracts
the interior region, and outputs a binary image, with 0 encoding the
interior and 1 the exterior. The difference 𝛿 (·, ·) is then computed as

𝛿 (V (M; S),V★ (M★; S) ) = 1
𝑁F𝑁P

𝑁F∑︁
𝑓 =1

𝑠 (I𝑓 (M; S) ) − 𝑠 (I𝑓 ★ (M★; S) )2
, (3)

where 𝑁P and 𝑁F are, respectively, the number of pixels of a single
image and the number of frames, and the squared norm ∥ · ∥2 is the
sum of the squared pixel differences. To minimize the loss (2), we
use CMA-ES [Hansen and Kern 2004] as in the work of Takahashi et
al. [2019], to be less sensitive to noises5, such as errors in setting up
the experiment setups and those in the silhouette extraction filter
𝑠 (·). We leave the incorporation of a differentiable approach, such
as the work of Murthy et al. [2021], as future work.

3.2 Incorporating Herschel–Bulkley Materials
During our preliminary study, we identified two tasks for estimat-
ing the material parameters for the Herschel–Bulkley model. First,
we realized that there is a mismatch between the previously used
Herschel–Bulkley model [Yue et al. 2015] and the situation encoun-
tered in a rotational rheometer. We propose a modification for a
better match in Section 4. Second, we found that using only a sin-
gle setup would occasionally fail to obtain a reasonable estimation,
as evidenced by our experiments (Section 7.2). We found that this
‘indeterminacy’ is due to the existence of a similarity relation in the
loss landscapes (Section 5). Building on these insights we develop
our method (Algorithm 1) for the estimation by selecting additional
setups (detailed in Section 6).
4The previous method by Takahashi et al. [2019] is equivalent to the case of 𝑁 = 1.
5Note that in real world experiments, it is not realistic trying to remove all sources of
errors; rather, we would like to be tolerant to errors.

We limit the search scope of the parameters to the material space
𝔐, such that it covers diverse materials while we can observe flows
of thosematerials using our experiment setups. Thematerial space is
linearly scaled to the unit cube [0, 1]3, which we call the normalized
material space, for the computation in CMA-ES as well as setup
selection.

Algorithm 1 ViRheometry

Input: Specimen S, number of setups 𝑁
Output: The estimated material parameters M̂
1: S1 ← (Rand(20 mm≤𝑤≤70 mm), Rand(20 mm≤ℎ≤70 mm))
2: V1 ← Experiment(S, S1)
3: M̆1 ← CMA-ES(V1; Initial = MInit; Σ = 1.0)
4: for 𝑘 = 2 to 𝑁 do
5: S𝑘 ← SetupSelection(M̆𝑘−1, {S1, . . . , S𝑘−1})
6: V𝑘 ← Experiment(S, S𝑘 )
7: M̆𝑘 ← CMA-ES(V1, . . . ,V𝑘 ; Initial = M̆𝑘−1; Σ = (2/3)𝑘−1)
8: end for
9: return M̂← M̆𝑁

3.3 Experiment Setups – Dam-Break
For the class of experiment setups, we aim for the one that is easy to
configure and has enough degrees of freedom to cover kinematically
different cases. Popular benchmark setups for fluids in the literature
include 1) dropping or injecting thematerial through a nozzle toward
the floor [Nagasawa et al. 2019; Takahashi and Lin 2019], 2) pouring
the material down an inclined channel [Pellegrino and Schippa
2018; Sáo et al. 2021], and 3) dam-break (or column collapse) (such
as the Bostwick consistometer). In all of these three examples, the
kinematical variation is realized by the variations in a) the ratio
between the inertia and the gravity force and b) the volume ratio
between plug flow (zero velocity gradient) and non-uniform (non-
zero velocity gradient) regions. We choose dam-break because of
its simplicity and ability to provide enough variation; we do not
have to worry about clogging at a nozzle or carefully configuring
the slope angle.

In our version of a dam-break, we initially pour the material into
a cuboid region enclosed by a horizontal floor and four vertical
walls (Figure 1). After initialization, one side of the vertical wall is
released to allow the material to flow out of the enclosed region6.
The depth (distance between side walls) of the cuboid is much less
informative in our dam-break setting, which we fix to a constant
value (4.0 cm) throughout, and we define the set of setup parameters
S to be the pair of the width 𝑤 and height ℎ of the initial cuboid
geometry: S = (𝑤,ℎ) (as in Figure 8 (a)). For the specimens we used,
we can assume non-slip boundary conditions.

For the candidates of the setups, we limit 20 mm ≤ 𝑤,ℎ ≤ 70 mm;
we avoid too small setups to mitigate the effect of surface tension,
boundary conditions and uneven free surfaces, while avoiding too
big setups to save the amount of materials. Further, we limit the
resolution for searching for the width𝑤 and height ℎ to 1 mm, as
6After flowing out, the fluids can flow toward the sides, as opposed to regular dam-break
settings where the side walls extend out. This is for reducing possible boundary effects
due to the side walls.

ACM Trans. Graph., Vol. 42, No. 6, Article 193. Publication date: December 2023.



Non-Newtonian ViRheometry via Similarity Analysis • 193:5

finely tuning them is not realistic. This defines a discrete set of
experiment setups Sexp.

4 SIMULATING HERSCHEL–BULKLEY MATERIALS
We use an elasto-viscoplastic Herschel–Bulkley model as in the
work of Yue et al. [2015] and Nagasawa et al. [2019]. As we try
to estimate the three parameters 𝜂, 𝑛, and 𝜎Y for the flowing part
only, we clarify the effect of elasticity and the conditions in which
our approach works. In addition, we modify the model by Yue et
al. [2015] for compatibility with the simple shear flow encountered
in a rotational rheometer. Although the modifications in hindsight
were only in coefficients in (14) and (15), they were important for
matching up the results (Figure 4). To ease the discussion, we start
from reviewing a 1D version corresponding to the shear part of a 3D
model and move on to the 3D simple shear model. We then discuss
the general 3D case and verify that the general case preserves the
properties we see in the 1D model and the simple shear flow.

4.1 1D Elasto-viscoplastic Herschel–Bulkley Model
In 1D, we decompose the total strain 𝜀 into the elastic 𝜀e and plastic
𝜀p parts additively: 𝜀 = 𝜀e + 𝜀p. For the elastic part7, we relate the
strain 𝜀e with the stress 𝜎s using an elastic modulus 𝜇:

𝜎s = 𝜇𝜀e . (4)
When the stress from the elastic part exceeds the yield stress 𝜎Y, the
excess deformation results in a permanent plastic flow, and excess
stress 𝜎ex arises due to the viscosity applied to the plastic rate of
strain ¤𝜀p. In the Herschel–Bulkley model, 𝜎ex is given by a power
law:

𝜎ex = 𝜎s − 𝜎Y = 𝜂 ¤𝜀𝑛p . (5)
Subject to a prescribed constant rate ¤𝜀 of total strain (i.e., pulling

the material at a constant speed), we must have
¤𝜀p = ¤𝜀 − ¤𝜀e . (6)

As the strain is increased and the stress is past the yield stress, the
plastic rate of strain starts to show up and there will be a transient
regime where both rates of elastic and plastic strains are non-zero.
During this transition regime, the rate of elastic strain gradually de-
creases, reaching a terminal state ¤𝜀e → 0, hence ¤𝜀p → ¤𝜀. Therefore,
as the terminal stress 𝜎s,∞, we have

𝜎s,∞ = 𝜎Y + 𝜂 ¤𝜀𝑛 . (7)
As the ratio between a stress (𝜎ex) and an elastic modulus (𝜇) is

a strain, dividing it by the strain rate (¤𝜀) suggests a transition time
(for the prescribed strain rate ¤𝜀 to push the stress from 𝜎Y to 𝜎s,∞):

𝑡∞ =
𝜎ex
𝜇 ¤𝜀 =

𝜂

𝜇 ¤𝜀1−𝑛 . (8)

From numerical analysis (shown in Figure 2) using (4), (5), and (6),
we see that we indeed obtain the terminal stress and that 𝑡∞ seems
to serve as a rough estimate of the time for the transition. It is
important to understand that as 𝜇 becomes larger, the transition
time 𝑡∞ reduces and the elastic strain approaches 0 (as 𝜎Y is fixed).
At the limit, the above elasto-viscoplastic Herschel–Bulkley (solid)
7We are re-using the symbols 𝜎s (shear stress) and 𝜇 (shear modulus) because this 1D
model corresponds to the shear part of the 3D case.
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Fig. 2. The evolution of stress (vertical) with respect to time (hori-
zontal) for 1D flow rule.We compare the transition time 𝑡∞ and terminal
stress 𝜎s,∞ predicted using (8) and (7) from the parameters shown in each
plot, with the transient regime seen in the plot and the actual terminal
stress shown in purple. ¤𝜀 is fixed to 10.0, a value within the range of shear
rates encountered during the measurement using a rotational rheometer.
From the parameter set shown in the top left plot, we are changing the
parameter(s) in pink in the other plots.

model becomes a Herschel–Bulkley fluid. In our simulation, we
set 𝜇 = 103 Pa so that the transition time is negligible (for the
mean strain rate in the flow) compared to the 1/3 seconds for video
recording, and at the same time the simulation does not require too
small time steps for explicit integration. This would still include
many fluid-like materials (as 103 Pa is usually considered to be on
the ‘softer’ side) but exclude fluffy ones like shaving foam.

4.2 3D Elasto-viscoplastic Model
To account for finite deformation in 3D, we incorporate multiplica-
tive decomposition instead of the additive decomposition, which
is an infinitesimal approximation of the multiplicative one8. The
deformation from the reference configuration 𝑿 to the current con-
figuration 𝒙 is described by the placement map 𝜙 : 𝑿 ↦→ 𝒙 , which
induces the so called deformation gradient F = 𝜕𝜙 (𝑿 )

𝜕𝑿 essentially
describing the local coordinate transformation. With the multiplica-
tive decomposition, F is decomposed to its elastic part Fe and plastic
part Fp: F = FeFp. While Fe encodes all the information of elastic
deformation, computationally we should instead use a descriptor of
deformation that provides objectivity or frame-indifference [Simo
and Hughes 1998]; the reproduced physical behavior should not be
affected by the coordinates we introduce. To handle rate-dependent
plasticity, we need objectivity for not only strain but also strain rate.
The (elastic part of the) left Cauchy–Green tensor be = FeFe⊤ and
its Lie derivative L𝒗be with respect to the velocity field 𝒗 serve as
such objective variables [Simo and Hughes 1998]. be and L𝒗be are
related via

¤be = Lbe + beL⊤ + L𝒗be, (9)

where L is the velocity gradient. Intuitively, (9) states that the update
of be involves an elastic part Lbe + beL⊤ due to the change in the
8When the elastic and plastic deformations are small, writing Fe = (I + ΔFe ) and
Fp = (I + ΔFp ) yields FeFp = I + ΔFe + ΔFp + ΔFeΔFp ≈ I + ΔFe + ΔFp , where ΔFe
and ΔFp correspond to 𝜀e and 𝜀p , respectively.
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deformation enforced by the surrounding velocity field, as well as a
plastic part L𝒗be atop the elastic change.
Under finite deformation, the linear elasticity in the above 1D

example is extended to a nonlinear hyperelastic model through a
stored (or strain) energy density 𝜓 (be), which relates the strain
be and stress 𝝈 via (10). The yield condition separating the elas-
tic and plastic regimes is specified via a yield function Φ(𝝈 ;𝜎Y)
with Φ(𝝈 ;𝜎Y) ≤ 0 indicating the elastic regime. 𝜓 (be), Φ(𝝈 ;𝜎Y),
together with a plastic flow model (called flow rule) for L𝒗be char-
acterize our 3D elasto-viscoplastic model.

From an argument regarding energy dissipation [Simo and Miehe
1992] (summarized in Appendix A for completeness), we have the
elastic constitutive relation9

𝝈 =
2
𝐽

𝜕𝜓

𝜕be
be, (10)

where 𝐽 = det[Fe], as well as the flow rule

−1
2 (L𝒗be)be

−1 = 𝜆
𝜕Φ

𝜕𝝈
, (11)

where 𝜆 is the flow rate (In §4.3, we will replace 𝜆 with ¤𝛾HB in (17),
and in §4.4, we see the validity of this replacement10).

For the stored energy density𝜓 (be), we use the following version
as in the work of Simo and Hughes [1998] and Yue et al. [2015]:

𝜓 (be) = 1
2𝜅

(
1
2 (𝐽

2 − 1) − log 𝐽

)
+ 1

2 𝜇 (tr[b̄e] − 𝑑), (12)

where 𝜅 and 𝜇 are the bulk and shear moduli, respectively, 𝑑 is the
dimensionality, and b̄e = 𝐽 −2/𝑑be is the volume-factored version
of be. We set 𝜅 to be sufficiently large11 (𝜅 = 104 Pa) so that 𝐽 ≈ 1.
The shear stress 𝝈 s is given by

𝝈 s = dev[𝝈] = 𝜇

𝐽
dev[b̄e], (13)

where dev[x] := x − 1
𝑑

tr[x]I is the deviatoric operator. We have
tr[dev[x]] = 0, dev[I] = O, and dev[dev[x]] = dev[x], where I
and O are the identity and zero tensors, respectively.

In Figure 3, we see that increasing the elastic moduli only slightly
alters the simulated shapes compared to our choice of the elastic
moduli (𝜅 = 104 Pa, 𝜇 = 103 Pa). Note that we claim the validity of
this choice only for our purpose, not for other types of flows (and
materials) in general.

4.3 Matching Yield Function and Flow Rule

�
slo

pe
: 

�
Wedetermine the yield functionΦ(𝝈 ;𝜎Y) and 𝜆 in (11)
tomatch the simple shear flow applied to the specimen
in a rotational rheometer. Consider a simple shear
along the 𝑥 axis with the constant velocity gradient
¤𝛾 occurring in the 𝑦 axis (as in the inset)12. Let the
components of the velocity be 𝒗 = (𝑣𝑥 , 𝑣𝑦)⊤ in 2D

9The relation (10) is equivalent to the usual relation 𝝈 = 1
𝐽

𝜕𝜓

𝜕Fe Fe⊤ .
10The argument regarding energy dissipation only asserts that the flow direction (left
side of (11)) is parallel to 𝜕Φ

𝜕𝝈 , so we need to verify that replacing 𝜆 with ¤𝛾HB gives the
right flow rate.
11Like the choice for 𝜇, this is just enough for negligible volume change in terms of the
visual, while allowing for not too small time steps for explicit integration.
12Ideally, a rotational rheometer applies a flow with constant velocity gradient to the
specimen. By choosing the coordinates appropriately, we can consider a simple shear
in the 𝑥𝑦 space.
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: ×1 

: ×1 
: ×10 

: ×10 
: ×1 

: ×10 
: ×10 

Fig. 3. Comparison of different elastic moduli (𝜅, 𝜇) settings. The insets
show the image differences with the corresponding image of the case 𝜅 : ×1
and 𝜇 : ×1.

and 𝒗 = (𝑣𝑥 , 𝑣𝑦, 𝑣𝑧) in 3D. The above simple shear states that 𝑣𝑦 = 0,

𝑣𝑧 = 0, and 𝜕𝑣·
𝜕· = 0 except that 𝜕𝑣𝑥

𝜕𝑦 = ¤𝛾 ≥ 0. Let LI =
©«
0 1 0
0 0 0
0 0 0

ª®¬
(or LI =

(
0 1
0 0

)
in 2D) be the ‘unit’ velocity gradient. Then, the

velocity gradient L in a simple shear is L = ¤𝛾LI. Likewise, defining
DI := LI + L⊤I , the induced shear stress 𝝈 s can be written using a
scalar shear stress 𝜎s as 𝝈 s = 𝜎sDI.
The flow curve measured by a rotational rheometer states the

scalar relation between ¤𝛾 and 𝜎s. For later ease of notation, we define
a shear rate tensor D = 2d = L + L⊤ (d is used in Appendix A).
Then, we have the following conversions (extracting the off diagonal
terms) from the tensors of shear rate and shear stress to their scalar
counterpart:

¤𝛾 =

√︂
D : D

2 =
1√
2
∥D∥F, 𝜎s =

√︂
𝝈 s : 𝝈 s

2 =
1√
2
∥𝝈 s∥F, (14)

where ∥ · ∥F is the Frobenius norm. The factor 1√
2
appears to cancel

the Frobenius norm of DI, which was missing in the work of Yue et
al. [2015].

As for the yield condition, the scalar stress 𝜎s is directly compared
with the yield stress 𝜎Y. Since 𝝈 s = dev[𝝈], we have the following
(von-Mises type) yield function (same for both 2D and 3D):

Φ(𝝈 ;𝜎Y) =
1√
2
∥ dev[𝝈] ∥F − 𝜎Y . (15)

Unlike the work of Yue et al. [2015], we do not have the usual
√

3
factor; the standard von-Mises is defined for pure shear (rather than
simple shear) and tensile stress. The flow direction is then computed
as

𝜕Φ

𝜕𝝈
=

1√
2

dev[𝝈]
∥ dev[𝝈] ∥F

, (16)

which in the simple shear is just DI.
To derive the flow rule, we set the flow rate ¤𝛾HB to update the elas-

tic strain (measure) be according to the Herschel–Bulkley model (1):

¤𝛾HB =

(
max(0, 𝜎s − 𝜎Y)

𝜂

)1/𝑛
. (17)
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(a)

(b)

(c)

(d)

(e)

1/24s 2/24s 3/24s 4/24s 5/24s 6/24s 7/24s 8/24s

Fig. 4. Comparison between flow rules. (a): Binary image of the cap-
tured footage for the moisturizing milk example shown in Section 7.2, (b):
simulated with our flow rule, (c): difference between (a) and (b), (d): simu-
lated with the model by Yue et al. [2015], (e): difference between (a) and (d).
For the simulations (b) and (d), we used the material parameters measured
by a rotational rheometer. While ours (b) shows nice agreement with the
captured footage, (d) flows notably faster than it should.

Like the distinction between ¤𝜀 and ¤𝜀p made in the 1D case, we need
to distinguish the shear rate ¤𝛾 (due to the velocity gradient) and
the flow rate ¤𝛾HB (due to the plastic flow) when there is elasticity.
Putting everything (11), (16), and (17) together (replacing 𝜆 with
¤𝛾HB), we have the following flow rule:

L𝒗be = −¤𝛾HB
(√

2 dev[𝝈]
∥ dev[𝝈] ∥F

)
be . (18)

4.4 Properties of the Flow Rule
We see two properties of the flow rule. First, as the terminal state
(when ¤be = O) for a simple shear, we have ¤𝛾HB = ¤𝛾 like the 1D
case. This is because for 𝜇 sufficiently large, be is close to identity so
(L𝒗be)be−1 ≈ −(L+L⊤) = −D = −¤𝛾DI, and that the flow direction
(16) is DI in the simple shear. Thus, 𝜆 in (11) was indeed the flow rate
and the replacement was valid. We also see this fact from numerical
experiment (using (9), (10), (15), (18), and L = ¤𝛾LI with ¤𝛾 = 10.0)
shown in Figure 5 (purple lines). Comparing the purple lines in
Figures 2 and 5, the agreement with the 1D version shows that the
3D version is a nice extension of the 1D model. We also note that
the constitutive model by Yue et al. [2015] results in a substantially
lower terminal stress, giving faster flow than expected as in Figure 4.
Ours provides better agreement with the captured footage. The
agreement can also be seen from Figure 1, where the simulated
results nicely reproduce the ‘shoulder’ seen in the captured footage
for congee. Second, the flow rule (18) is volume preserving, because
during the update (18) we have 𝑑

𝑑𝑡
det[be] = 𝑑det[be ]

𝑑be
: L𝒗be = 0

(hence ¤𝐽 = 0 also).
A discrete return mapping algorithm should ideally preserve the

above two properties. We show in Appendix B that a slight modifi-
cation to the version of Yue et al. [2015] suffices. The computation
cost of the discrete return mapping using our modified version is
almost identical to that using the version of Yue et al. [2015], as the
modification is essentially in the coefficients.
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Fig. 5. The evolution of stress (vertical) with respect to time (horizon-
tal) for 3D simple shear. We compare our modified flow rule (purple line)
with that of Yue et al. [2015] (red line). Our rule provides the right terminal
stress 𝜎s,∞, whereas that of Yue et al. [2015] results in a lower terminal
stress. ¤𝛾 is fixed to 10.0 as in Figure 2. From the parameter set shown in the
top left plot, we are changing the parameter(s) in pink in the other plots.

(6.7, 2.0) (2.0, 7.0) (6.6, 2.0) (3.7, 5.7) (6.8, 2.0) (5.6, 6.9)
(24.4, 0.35, 13.7) (17.2, 0.629, 35.0) (13.2, 0.977, 1.21 × 10−6)

Fig. 6. MPM 3D loss (top) and the matched plane Poiseuille loss (bot-
tom) for different material-setup pairs. Red dots indicate the ground truth
material parameters (𝜂,𝑛, 𝜎Y ) shown in the middle. Setups are shown in
(width, height).

5 SIMILARITY STRUCTURE AND ANALYSIS
Toward the optimizations for the material parameters, we draw
insights for the loss functions. We analyze the loss function for a
single setup L(M,M★; S) in (2) and reveal its similarity structure
(§5.1), the source of indeterminacy where low loss values are located.
We show how this structure can be mathematically defined (via
Hessian and loss normal, §5.2) and computed (§5.3). For efficiently
estimating the loss normals, we establish a relation between our loss
L(M,M★; S) and another loss function of an idealized steady flow,
which admits an analytical form of its similarity structure (§5.4 and
§5.5). This relation will be used to propose setups for experiments
in §6.

5.1 Loss Landscapes
To see the structure of the loss landscapes, we sampled in total
200 landscapes 𝔏, by first using Poisson disk sampling to draw 20
materials from the material space 𝔐, and then randomly sampling
10 setups from the setup space Sexp for each of the material. For
each of the material-setup pairs, we performed MPM 3D simulations
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Fig. 7. Loss landscapes and silhouette images for different views (top
and bottom). Note the silhouette images can be quite similar even if the
material parameters are far apart.

to compute loss values at 512 points regularly aligned (in the nor-
malized material space) at the vicinity of the ground truth material
parameters (Figure 6 Top; see our supplementary material A §6 for
all the landscapes). The view used to compute the losses is shown in
Figure 7 Top. From this local analysis, we see that for every material-
setup pair, there is a thin, low loss region, which we call similarity
set, indicating an indeterminacy of the material parameters within
that region; different material parameters result in almost identical
silhouettes (Figure 7, supplementary material A §7). In addition,
there is a dependence of the orientation of that region on the setups
(the magnitudes of the dependency relies on the materials). We see
that changing the view as in Figure 7 (and supplementary material
A §7) had little impact on the loss structure13.

5.2 Hessian as a Similarity Measure
Mathematically, we define the similarity setMM (S) for a given setup
S and the material parameters M as

MM (S) := {M̃ | L(M̃,M; S) ≤ T }, (19)
where T is a threshold for the (small) loss value. As we will see,
the Hessian of the loss characterizes this similarity set. Let M̃ =
M + ΔM, where ΔM is a small variation in the material space, and
LM;S (M̃) := L(M̃,M; S). We obtain the Taylor expansion of the loss
as
LM;S (M̃) = LM;S (M) + 𝑮M;SΔM + ΔM⊤HM;SΔM +𝑂 ( |ΔM |3 ), (20)

where 𝑮M;S := 𝜕LM;S
𝜕M

���
M̃=M

and HM;S := 𝜕2LM;S
𝜕M⊤𝜕M

���
M̃=M

for the gradi-
ent and Hessian of the loss, respectively. Because the loss is zero
and minimum at M̃ = M, we have LM;S (M) = 0 and 𝑮M;S = 0⊤.
Hence, the loss is locally characterized by the Hessian HM;S:

L(M̃,M; S) ≤ T ⇔ ΔM⊤HM;SΔM ≤ T +𝑂 ( |ΔM|3) . (21)

Let HM;S = Q⊤M;SΛM;SQM;S be the eigendecomposition of the Hes-
sian, whereQM;S consists of eigenvectors andΛM;S = diag(𝜆1, 𝜆2, 𝜆3)
consists of eigenvalues 𝜆1, 𝜆2, and 𝜆3. The similarity set then be-
comes
MM (S) ≈ {M̃ | (QM;S (M̃ − M) )⊤ΛM;S (QM;S (M̃ − M) ) ≤ T}, (22)

which reveals its ellipsoidal structure, with its axes given by the
eigenvectors, while the length 𝑙𝑖 along the 𝑖-th eigenvector given
by 𝑙𝑖 =

√︁
T |𝜆𝑖 |−1. The shortest axis (i.e., the direction the material

13We believe that a good view is a one, like ours, that reflects the spread after flowing
out and the change in the height and free surface (e.g., the shoulder in Figure 1).

Initial sample
Plug region

Flow region

(a) (b)

(�)

�

Fig. 8. (a) A dam-break setup. (b) A plane Poiseuille flow setup.

parameters are most accurately determined, or, the normal direc-
tion of the similarity set) is characterized by the eigenvector 𝒒max
corresponding to the largest eigenvalue. We call 𝒒max the loss normal.

5.3 Toward the Estimation of the Loss Normal
To estimate HM;S, one possibility is to make all the processes (i.e.,
from simulation to surface extraction and rendering) encapsulated
in the computation of the loss function differentiable, which should
be a viable future work. Another possibility is to use finite differ-
ences, which is however costly14. In addition, we note that the loss
normals estimated using finite differences usually seem to be accu-
rate, but can be noisy (unreliable) for materials with extremely low
yield stress (like honey). Instead, we analyzed the plane Poiseuille
flow for Herschel–Bulkley fluids and found their Hessians HPP can
be computed analytically. We establish a connection between the
(unsteady) dam-break (DB) and (steady) plane Poiseuille (PP) flows,
and show that we can learn a function Θ that maps the pair of the
material parameter set M and the DB setup S to a PP setup SPP:
SPP = Θ(M, S), allowing for light weight and accurate estimation of
the loss normal15 𝒒max through HPP (Algorithm 2).

Algorithm 2 Loss_Normal_Estimation

Input: A material estimate M̂ and a dam-break setup S
Output: The estimated loss normal 𝒒maxM̂;S
1: SPP ← Θ(M̂, S)
2: HPP

M̂;SPP
← Compute_Hessian(M̂, SPP)

3: 𝒒PPmaxM̂;SPP ← Eigendecomposition(HPP
M̂;SPP
)

4: return 𝒒maxM̂;S ← 𝒒PPmaxM̂;SPP

5.4 Herschel–Bulkley plane Poiseuille Flow and its Hessian
We consider a channel flow between two infinitely long non-slip
plates placed in parallel separated by a distance of 2𝐿. Assuming
the flow extends in parallel in the depth dimension, it suffices to
consider a 2D slice. By applying a constant pressure gradient 𝑃 along
the direction parallel to the plates (as in Figure 8 (b)) and with
14It is costly because more than tens of simulations are needed per a single estimation
of a Hessian, and that we want to compare multiple Hessians to determine the next
setup; it would result in hundreds of simulations per setup selection. Our approach
in Section 6, in contrast, performs no simulation and can select a new setup within a
second.
15We do not claim that HPP is an accurate approximation of H, as their condition
numbers do not match up well. Nonetheless, the loss normal seems useful for our
purpose of ViRheometry.
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no external force, a steady flow (2D plane Poiseuille flow) with a
constant velocity profile irrespective of time is formed between
the plates. This plane Poiseuille flow closely models the ideal flow
occurring in a pipe rheometer. A setup of a plane Poiseuille flow
can thus be represented by 𝑃 and 𝐿 as SPP := (𝑃, 𝐿). In physics, the
existence of analytical solutions for Bingham and Herschel–Bulkley
fluids has been shown [Sankar and Lee 2016]. Our work builds on
these insights.
We set the 𝑥- (resp. 𝑦-) axis parallel (resp. perpendicular) to the

two infinite plates, and let the positions of the plates be 𝑦 = ±𝐿, as
in Figure 8 (b). As detailed in our supplementary material A §2, the
flow solely occurs in the 𝑥 direction, and the velocity 𝒗M;SPP can be
written in the form 𝒗M;SPP = (𝑣𝑥,M;SPP (𝑦), 0). In addition, there will
be yield surfaces at 𝑦 = ±𝑙 separating the flowing (non-zero velocity
gradient) and plug (zero velocity gradient) regions, with 𝑙 given by
𝑙 = 𝜎Y/𝑃 .

Writing the velocity profile 𝑣𝑥,M;SPP (𝑦) as a product of two terms,
one for the maximum velocity 𝑣 (Max)

𝑥,M;SPP in the channel (occurring at
the plug region) and the other for the velocity decay ratio 𝜁M;SPP (𝑦)
(between the velocity at 𝑦 and the maximum velocity), we have

𝑣𝑥,M;SPP (𝑦) = 𝑣
(Max)
𝑥,M;SPP𝜁M;SPP (𝑦), (23)

where the derivations (in our supplementary material A §3) show

𝑣
(Max)
𝑥,M;SPP =

𝑛

𝑛 + 1

(
𝑃

𝜂

)1/𝑛
(𝐿 − 𝑙) 𝑛+1𝑛 , (24)

𝜁M;SPP (𝑦) = 1 −
(

max(0, |𝑦 | − 𝑙)
𝐿 − 𝑙

) 𝑛+1
𝑛

. (25)

We define the loss for the plane Poiseuille flowLPP (M̃,M; SPP)
for materials M̃ andM as the squared error between their velocity
profiles 𝑣

𝑥,M̃;SPP (𝑦) and 𝑣𝑥,M;SPP (𝑦):

LPP (M̃,M; SPP) =
∫ 𝐿

0

(
𝑣
𝑥,M̃;SPP (𝑦) − 𝑣𝑥,M;SPP (𝑦)

)2
𝑑𝑦, (26)

where we are only integrating the error in the 𝑦 direction for 0 ≤
𝑦 ≤ 𝐿 because the velocity profiles are independent of the 𝑥 position
and are symmetric around 𝑦 = 0.
We take a variational approach to compute the Hessian HPP

M;SPP
of the plane Poiseuille loss LPP (M̃,M, SPP). Let M̃ = M + 𝜀𝝃 . Then,
we expand 𝑣

𝑥,M̃;SPP (𝑦) = 𝑣𝑥,M+𝜀𝝃 ;SPP (𝑦) as

𝑣𝑥,M+𝜀𝝃 ;SPP (𝑦) = 𝑣𝑥,M;SPP (𝑦) + 𝜀𝑮M;SPP (𝑦)𝝃 +𝑂 (𝜀2), (27)

where 𝑮M;SPP (𝑦) =
𝜕𝑣

𝑥,M̃;SPP (𝑦)
𝜕M

����
M̃=M

. Substituting into LPP,

LPP (M̃,M; SPP ) = 1
2 𝜀

2𝝃⊤
[
2
∫ 𝐿

0
𝑮M;SPP (𝑦)⊤𝑮M;SPP (𝑦)𝑑𝑦

]
𝝃 +𝑂 (𝜀3 ) . (28)

Differentiating with respect to 𝜀 and setting 𝜀 = 0 reveals HPP
M;SPP :

HPP
M;SPP = 2

∫ 𝐿

0
𝑮M;SPP (𝑦)⊤𝑮M;SPP (𝑦)𝑑𝑦. (29)

Writing the components of HPP
M;SPP as

HPP
M;SPP = 𝐿3H̃PP

M;SPP = 𝐿3 ©«
�̃�𝜂𝜂 �̃�𝜂𝑛 �̃�𝜂𝜎Y
�̃�𝜂𝑛 �̃�𝑛𝑛 �̃�𝑛𝜎Y
�̃�𝜂𝜎Y �̃�𝑛𝜎Y �̃�𝜎Y𝜎Y

ª®¬ , (30)

they can be computed analytically as

�̃�𝜂𝜂 = 2𝜎Y
𝑃𝐿

𝐴2
𝜂 + 4

(
1 − 𝜎Y

𝑃𝐿

)
𝐴2
𝜂𝐶1, (31)

�̃�𝜂𝑛 = 2𝜎Y
𝑃𝐿

𝐴𝜂𝐴𝑛 + 2
(
1 − 𝜎Y

𝑃𝐿

) (
2𝐴𝜂𝐴𝑛𝐶1 −𝐴𝜂𝐵𝑛𝐶2

)
, (32)

�̃�𝜂𝜎Y = 2𝜎Y
𝑃𝐿

𝐴𝜂𝐴𝜎Y + 2
(
1 − 𝜎Y

𝑃𝐿

)
𝐴𝜂𝐴𝜎Y𝐶3, (33)

�̃�𝑛𝑛 = 2𝜎Y
𝑃𝐿

𝐴2
𝑛 + 4

(
1 − 𝜎Y

𝑃𝐿

) (
𝐵2
𝑛𝐶4 −𝐴𝑛𝐵𝑛𝐶2 +𝐴2

𝑛𝐶1
)
, (34)

�̃�𝑛𝜎Y = 2𝜎Y
𝑃𝐿

𝐴𝑛𝐴𝜎Y + 2
(
1 − 𝜎Y

𝑃𝐿

) (
𝐴𝑛𝐴𝜎Y𝐶3 − 𝐵𝑛𝐴𝜎Y𝐶5

)
, (35)

�̃�𝜎Y𝜎Y = 2𝜎Y
𝑃𝐿

𝐴2
𝜎Y + 4

(
1 − 𝜎Y

𝑃𝐿

)
𝐴2
𝜎Y𝐶6, (36)

where,

𝐴𝜂 = − 1
𝑛 + 1

1
𝑃𝐿

(
𝑃𝐿 − 𝜎Y

𝜂

) 𝑛+1
𝑛

, 𝐴𝜎Y = − 1
𝑃𝐿

(
𝑃𝐿 − 𝜎Y

𝜂

) 1
𝑛

, (37)

𝐴𝑛 =
𝜂

𝑃𝐿

(
𝑃𝐿 − 𝜎Y

𝜂

) 𝑛+1
𝑛

(
1

(𝑛 + 1)2 −
1

𝑛(𝑛 + 1)

(
log 𝑃𝐿 − 𝜎Y

𝜂

))
,

(38)

𝐵𝑛 =
1

𝑛(𝑛 + 1)

(
𝑃𝐿 − 𝜎Y

𝜂

) 1
𝑛 (

1 − 𝜎Y
𝑃𝐿

)
, (39)

and

𝐶1 =
(1 + 𝑛)2

(1 + 2𝑛) (2 + 3𝑛) , 𝐶2 =
𝑛2 (3 + 5𝑛) (1 + 𝑛)
(1 + 2𝑛)2 (2 + 3𝑛)2 , (40)

𝐶3 =
2 + 3𝑛

2(1 + 𝑛) (1 + 2𝑛) , 𝐶4 =
( 𝑛

2 + 3𝑛

)3
, (41)

𝐶5 =
𝑛2 (3 + 4𝑛)

4(1 + 2𝑛)2 (1 + 2𝑛)2 , 𝐶6 =
1

(1 + 𝑛) (2 + 𝑛) . (42)

Please see our supplementary material A §3 for the derivation.

5.5 Learning the Conversion Map Θ

The derivation of the Hessian reveals that H̃PP
M;SPP in (30) is a function

of 𝑃𝐿 only. Hence, the tip of the loss normal 𝒒max forms a (1D)
curved trajectory on the unit sphere, though there seemed to be
two degrees of freedom (i.e., 𝑃 and 𝐿). Interestingly, this degeneracy
is not a problem when matching up the loss normals, as we will see
below.
We relate the losses L(M̃,M; S) and LPP (M̃,M; SPP) instead of

relating H and HPP directly, to avoid any error that might occur
in the estimation of the Hessian of L of a DB setup. We start by
defining a matching score between L and LPP as follows. Given
the materialM and the pair of setups S and SPP, we compute HPP

M;SPP
and obtain the loss normal 𝒒PPmaxM;SPP . Then, for M̃ in the vicinity of
M, we define a ‘distance’ 𝑑M;SPP to the similarity set as 𝑑M;SPP (M̃) =
|𝒒PPmax

⊤
M;SPP (M̃ −M) |, measured as the distance to the plane defined

by 𝒒PPmaxM;SPP atM. Then, for a given local region ΩM centered atM,

ACM Trans. Graph., Vol. 42, No. 6, Article 193. Publication date: December 2023.



193:10 • Mitsuki Hamamichi, Kentaro Nagasawa, Masato Okada, Ryohei Seto, and Yonghao Yue

25 5020

40

60

20

40

60

25 5020

40

60

5

10

15

20

25 5020

40

60

10

20

30

(24.4, 0.35, 13.7) (17.2, 0.629, 35.0) (13.2, 0.977, 1.21 × 10−6)

Fig. 9. Condition numbers of Hessians computed using the finite dif-
ference approximation for different setups (horizontal and vertical axes
correspond to width and height of the setup). Please see our supplementary
material A §5 for other materials.

we compute the matching score 𝑆M;S,SPP as a weighted sum of the
DB loss values, weighing values higher at M̃ near the similarity set:

𝑆M;S,SPP =

∑
M̃∈ΩM

exp(−𝑑M;SPP (M̃)/𝑑0)L(M̃,M; S)∑
M̃∈ΩM

exp(−𝑑M;SPP (M̃)/𝑑0)
, (43)

where we used 𝑑0 = 0.025. A lower value of the score indicates a
better match-up.

We find the closest SPP for M and S using a grid search (i.e., a 1D
search done for 𝑃𝐿). As we show in Figure 6 (see our supplementary
material A §6 for the full results), the match up in the orientations
of the similarity sets is pretty good. Then, we learn the function
SPP = Θ(M, S) using the searched results for the 200 pairs ofM and S
corresponding to the 200 landscapes 𝔏, and additionally chosen 850
pairs of M and S to improve the conversion map near the boundary
of the material space𝔐. As the model for Θ, we found that a second
order polynomial of 𝑤 , ℎ, 𝜂, 𝑛, 𝜎Y, 𝑤−1, ℎ−1, 𝜂−1, 𝑛−1, and 𝜎Y−1

was sufficient; it was important to include the reciprocal terms𝑤−1,
etc., and the second order helps to account for products, such as
𝑤/ℎ. We show the detailed expression of the learned result in our
supplementary material A §6.

6 VIRHEOMETRY USING THE SIMILARITY STRUCTURE
We choose the initial setup uniformly randomly from Sexp. In nu-
merical optimization, the efficiency of the optimization is usually
determined by the condition number of the problem (in our case,
the ratio between the smallest and largest eigenvalues of the Hes-
sian of the loss function). The finite difference approximation of the
Hessians (Figure 9) provides us an insight that a lower condition
number can happen anywhere in the setup space, meaning that any
setup within the range can be a good initial setup (for a particular
material). In addition, we suppose the user has no prior knowledge
on the material parameters. Thus, we decided to use this random
sampling approach for the initial setup.

Once we obtain an estimate M̂ on the material parameters using
CMA-ES, we find the new setup Snew such that its loss normal
(computed by Algorithm 2) is ‘most perpendicular’ to the previously
chosen setups. For the loss normals 𝒒max𝑖 of the previous setups
and that 𝒒maxnew of the new setup, we define the perpendicularity
score 𝑆p =

√︁∑
𝑖 (𝒒max𝑖 · 𝒒maxnew)2, and find the new setup with the

smallest perpendicularity score. We measure this perpendicularity
(i.e., 𝒒max𝑖 · 𝒒maxnew) in the normalized material space. For the

second setup for instance, the new setup is the one that minimizes
the absolute cosine between the two loss normals.
To run CMA-ES, there are three parameters to be determined:

1) the initial variance parameter Σ, 2) the population count 𝑛p per
each search, and 3) the number of search generations 𝑛s. For 1), we
decrease the variance parameter as the number of setups increases:
for 𝑘-th setup (𝑘 ≥ 1), we use (2/3)𝑘−1. For 2), we use the formula
(6) in the work of Hansen and Kern [2004] and set 𝑛p = 7. For 3),
we set 𝑛s to 100, which would result in 𝑛p × 𝑛s × 𝑁 simulations for
the 𝑁 -th setup (700 and 1, 400 simulations for the first and second
setups).

For the initial guess MInit of the material parameter used during
the optimization with the first setup we take the center point of the
material parameter space. We configured MPM using uGIMP [Bar-
denhagen and Kober 2004] and APIC [Jiang et al. 2015], and used
Taichi [Hu et al. 2019] for implementation. Running CMA-ES and
MPM simulations on an NVIDIA A 100 GPU, it takes about 8 and
16 hours to complete the optimizations for the first and second
setups. Our code is available online at https://github.com/AGU-
Graphics/ViRheometry.git.
The manual work done in the experiments consists of 1) setting

up the dam break configuration, 2) taking video footage, and 3)
using the fSpy software [Stuffmatic 2018] for calibration. These in
total result in about 1 hour per experiment. Hence, the total manual
workload per material is about 2 to 3 hours, which is considerably
shorter than manually tweaking the parameters to match the simu-
lations with captured footage (it took weeks for reproducing foams
in the work of Yue et al. [2015]).

7 RESULTS

7.1 Validation via 3D Emulations
We chose 6 materials from the material space 𝔐 (we show their
distribution in our supplementary material A §8), and used our
method to estimate their material parameters. In this assessment, we
used 3D MPM simulations to emulate the captured frames, instead
of performing real experiments. Note that because we are using
simulations in place of real experiments, the optimization is noiseless
in the emulations (hence better results can be expected than using
real experiments). We define the relative error 𝐸rel (M★,M) between
material parameters M★ = (𝜂★, 𝑛★, 𝜎Y★) and M = (𝜂, 𝑛, 𝜎Y) as

𝐸rel (M★,M) =
√︄(

𝜂 − 𝜂★
𝜂max − 𝜂min

)2
+
(

𝑛 − 𝑛★
𝑛max − 𝑛min

)2
+
(

𝜎Y − 𝜎Y★
𝜎Ymax − 𝜎Ymin

)2
,

(44)

where 𝜂min, 𝜂max, 𝑛min, 𝑛max, 𝜎Ymin, and 𝜎Ymax are the bounds of
the material space 𝔐.

We first compare the performance using only a single setup and
that using two setups. In this comparison, we consider𝐸rel (M★,M) ≤
0.1 as good enough. The optimization using two setups will run in
total 2, 100 simulations (700 for the first setup and 700 × 2 during
the second setup). Thus, we also run the optimization using only a
single setup up to 2, 100 simulation count for fairness (e.g., Figure 10
(a)), but we terminate at 700 simulation count if the relative error of
the estimation was already good enough (i.e., 𝐸rel (M★,M) ≤ 0.1) or
it tends to stuck (which we judge by the variance of the CMA-ES
population), e.g., Figure 10 (b). The single setup and the first setup
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Fig. 10. Relative errors vs. simulation count, and flow curves. In (a) to
(e), black lines correspond to the single setup cases, and orange, blue, green
and purple lines correspond to the first (identical to the single setup case
up to 700 simulation count), second, third and fourth setups in the multiple
setup cases. In (a) to (c) right, we are showing the flow curves corresponding
to the last simulation count of the black, blue, green and purple lines in
the relative error plots (in the left), as well as the ground truth flow curves
(shown as dotted lines).

are identical for fairness. For each of the materials, we performed
the tests 5 times (each starting from a randomly selected first setup).
The full results can be found in the supplementary material A §8.

For in total the 6 × 5 = 30 cases, 11 cases were already good
enough using only the single setup. For these 11 cases, continuing
using a second setup did not hurt the results; they also resulted in
𝐸rel (M★,M) ≤ 0.1. For the remaining 19 cases, using the two setups
resulted in 9 cases reached 𝐸rel (M★,M) ≤ 0.1 (e.g., Figure 10(a)),
and the performance of the remaining 10 cases were comparable
to or better than using the single setup (e.g., Figure 10(c)). We also
continued using a third setup for these 10 cases, which resulted in
further improvements (e.g., Figure 10(c)), with 6 of them reached
𝐸rel (M★,M) ≤ 0.1. Using a fourth setup, all the remaining 4 cases
reached 𝐸rel (M★,M) ≤ 0.1 (e.g., Figure 10 (c)).
We also compared the results in terms of the flow curves. As in

Figure 10, it is interesting to note that even though the relative error
might seem large, the flow curves for the range16 of shear rate of
10−2 ≤ ¤𝛾 ≤ 104 sometimes show nice agreement with those of
the ground truth material parameters, with the differences mostly
seen in the extremely low and high shear rate regimes (usually the
power-law index 𝑛 is easier to determine than the yield stress 𝜎Y
and the consistency parameter 𝜂; in the log-log plot of the flow
curves, 𝑛 roughly corresponds to the ‘slope’ of the curves, while 𝜎Y
and 𝜂 have higher impact on the low and high shear rate regimes,

16Note that the range of 10−2 ≤ ¤𝛾 ≤ 104 is much larger than that (100 ≤ ¤𝛾 ≤ 102)
can be reliably measured by our rheometer.

respectively). We believe this is because the observations mainly
provide information on the intermediate range of the shear rate.

In addition, we tested selecting a second setup with a loss normal
similar (i.e., minimum perpendicularity as opposed to maximum
perpendicularity in our method) to the first setup (but distant from
the first setup) (compare Figure 10 (b) and (d)), as well as using the
frames from a different view in place of the second setup (compare
Figure 10(b) and (e)). These usually resulted in inferior performance
compared to ours (as expected because the second one chosen this
way would have a similar similarity set as the first setup).

7.2 Validation via 3D Real-World Experiments
We built our device for the dam-break experiments using only off-
the-shelf components. For the walls, we used clear acrylic plates
so that we can see the inside. The floor is made of opaque acrylic
plate. These plates were cut by a laser cutting machine and glued
together. These operations can be easily done at a nearby DIY shop.
As in Figure 1, the width𝑤 can be tuned by adjusting the position
of the back panel. We pour the specimen of interest until the height
reaches the specified value ℎ. To start the experiment, we instantly
remove the front panel upward. Due to the manual operation, the
removal of the front panel takes about 0.02 to 0.03 seconds. For
video shooting, we used a mobile phone with a slo-mo mode to
obtain a 240 fps video. As the start of the flow, we choose the frame
where the bottom tip of the front panel is closest to ℎ

2 . Starting from
that frame, a total of 1/3 seconds (8 frames at 24 fps) is used for
optimization. By limiting to this short time window representing
the beginning of the flow, the spread of the tip of the specimen is
limited and the hope is that the result is less affected by the surface
tension. We then extract the silhouettes from the video using the
automation functionality available in Adobe Photoshop. The surface
mesh of the simulated material is reconstructed using a marching
cubes method by Lewiner et al. [2003] and then smoothed using a
method by Bhattacharya et al. [2015], which is then rendered with
the camera pose calibrated via fSpy [Stuffmatic 2018].
For six materials, moisturizing milk, Japanese pork cutlet sauce

(Tonkatsu sauce), Japanese thickened Worcestershire sauce (Chuno
sauce), Japanese cabbage pancake sauce (Okonomi sauce), lotion,
and sweet bean paste (TianMian Jiang), we used a rotational rheome-
ter (Anton-Paar Modular Compact Rheometer MCR 92) with a par-
allel plate to measure their flow curves plotted as dotted lines in
Figure 13. During the measurement, we experienced 5% to 10% de-
viation in terms of the effective viscosity (hence also the resulting
shear stress) per different measurements for the same material. Note
that the rheometer makes use of accurately measured kinematic
data of the stress and strain rate pairs, whereas ours use no such
kinematic data during estimation; just image sequences. We believe
our method is doing a good job in matching up the flow curves. We
show all the captured and simulated frames in our supplementary
material B. For the sweet bean paste, the estimation using a sin-
gle setup already provided nice agreement, and the introduction
of the second setup provided a comparable result. For the mois-
turizing milk, Japanese pork cutlet sauce, and Japanese thickened
Worcestershire sauce, the use of the second setup much improved
the estimation, especially for the low to moderate range of shear
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Fig. 11. Comparison between simulated (left) and captured (right)
examples.

rate (100 to 101). Note that investigating the differences (shown in
supplementary material B) between the captured footage and simu-
lated results for the first setup, we see that the match up is already
in a good agreement, and it is the second setup providing additional
information for further pinning down the material parameters. We
list the estimated material parameters as well as the setups being
used in Table 1.
In hindsight, it seems setups near the four corners, (𝑤,ℎ) =
(20 mm, 20 mm), (20 mm, 70 mm), (70 mm, 20 mm), (70 mm, 70 mm),
help to discern the material parameters. This insight is found as
a result of using our technique. Nevertheless, we recommend us-
ing our technique to determine the additional setups rather than
predetermining additional setups via the corner setups, because 1)
the computation cost for finding a new setup is almost negligible
compared to other tasks (performing experiments and running opti-
mizations), 2) whether the large (resp. small) geometry, 70 mm (resp.
20 mm), works would be material dependent; the flow can be too
fast (resp. slow or even no flow) for certain materials, and 3) using
all the four corner setups would require a much longer estimation
time, as opposed to our method where two setups are generally
sufficient (Figure 13).
In Figure 11, we show a side-by-side comparison between simu-

lated and captured examples using Japanese thickened Worcester-
shire sauce, lotion, and sweet bean paste for a nozzle-drop scenario.
Note that our simulation does not account for the surface tension,
hence the surfaces are bumpy. In addition, due to manual injection,
the injection speed is not constant; rather, there is up to 20% de-
viation in the speed over time, which is not accounted for in the
simulation. Nevertheless, the comparison indicates that the non-
Newtonian viscosity estimated using our ViRheometry technique is
able to reproduce a couple of interesting effects. With relatively low
effective viscosity, Japanese thickened Worcestershire sauce forms
a dip near the location of impact. Lotion, having higher effective
viscosity, exhibits wave patterns due to the repetition of stacking
(forming a ‘lump’) and flowing (like ‘avalanches’). Having a much
higher relative viscosity with sweet bean paste, we observe the coil-
ing behavior. The differences in the flowing behaviors are nicely
captured using our simulation.

7.3 Application to materials with inclusions
There are various scenarios the measurements via a rheometer may
fail. Even when the inclusions fit in the narrow gap, the measure-
ment may result in a discontinuous or a noisy flow curve, if clogging
or non-uniform flows happen in the gap. In addition to that, even
when the measured flow curve is smooth, it can be unreliable if
the moisture in the material separates and the rest of the material
slips over the moisture. We observed that our mustard was this

Table 1. Experiment settings and estimated material parameters.

Material Setup ♯1 Setup ♯2 Estimated parameters
𝑤 ℎ 𝑤 ℎ 𝜂 𝑛 𝜎Y

Moisturizing milk 2.9 5.9 3.2 2.0 1.27 0.87 14.75
Japanese pork
cutlet sauce 6.0 5.8 3.2 2.0 4.02 0.55 1.60

Japanese thickened
Worcestershire sauce 2.1 4.0 3.0 2.0 0.55 0.81 1.95

Japanese cabbage
pancake sauce 4.2 3.8 2.9 2.0 2.62 0.76 11.58

Lotion 5.1 2.5 7.0 7.0 9.76 0.42 1.46
Sweet bean paste 4.8 4.1 2.1 2.0 10.85 0.75 33.46

Mustard 3.3 6.6 2.3 2.0 4.94 0.85 27.65
Thousand island dressing 3.3 3.6 2.9 2.0 1.49 0.82 13.48

Cobb salad dressing 5.5 4.7 2.9 2.0 1.08 0.87 5.67
Sesame dressing 4.0 4.2 2.9 2.0 0.49 1.00 1.93
Pomodoro sauce 3.2 2.1 7.0 7.0 4.28 0.46 16.98
Carbonara sauce 6.4 3.7 2.5 2.0 7.29 1.00 1.52

Congee 6.4 5.7 2.1 2.0 18.17 0.50 22.90

case. The measurement suggests that the flow curve of the mustard
is very close to the moisturizing milk, which is not true from the
observations of their flowing behaviors. With our method, we suc-
cessfully identify a much higher effective viscosity, agreeing with
the observation.
For materials with inclusions, we used our method to estimate

their parameters listed in Table 1. Then, for 1) thousand island dress-
ing, 2) Cobb salad dressing, 3) sesame dressing, 4) Pomodoro sauce,
and 5) congee, we simulated animation sequences (Figure 12 and
supplementary video) using the estimated parameters. These mate-
rials are simulated using the material point method as homogeneous
continua. After the simulations, a fraction of the material points
are selected as inclusions with random initial orientations, then we
track the orientations of these inclusions (using the rotation part
of the polar decomposition of the velocity gradient for updating
the orientations), and instanced them with the inclusion geometries
during rendering. The tweaking of the optical parameters and mod-
eling of the inclusions are out of the scope of this paper and are
left for future work. The impression of the flows of these materials
agrees with our daily experience quite nicely.

8 CONCLUSIONS, LIMITATIONS AND FUTURE WORK
We have presented a method for estimating the Herschel–Bulkley
parameters of various fluid-like materials in our daily life. By match-
ing the flow rule to the scenario assumed in a rotational rheometer,
we were able to reproduce nicely matched simulations. By making
use of multiple setups, presented using an analysis based on the sim-
ilarity relation, we were able to improve the estimations. We believe
this similarity relation is also useful for machine learning based ap-
proaches to design their setups and to evaluate the estimated errors.
The parameters obtained by our method is ready for making anima-
tions without the need for tweaking the material parameters, which
dramatically reduce the manual workload necessary for making an
animation.
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𝑡 = 2.0𝑠 𝑡 = 4.0𝑠 𝑡 = 6.0𝑠 𝑡 = 8.0𝑠 𝑡 = 10.0𝑠

𝑡 = 1.0𝑠 𝑡 = 2.0𝑠 𝑡 = 3.0𝑠 𝑡 = 4.0𝑠 𝑡 = 5.0𝑠

𝑡 = 1.0𝑠 𝑡 = 2.0𝑠 𝑡 = 3.0𝑠 𝑡 = 4.0𝑠 𝑡 = 5.0𝑠

𝑡 = 0.5𝑠 𝑡 = 1.0𝑠 𝑡 = 1.5𝑠 𝑡 = 2.0𝑠 𝑡 = 2.5𝑠

𝑡 = 1.0𝑠 𝑡 = 2.0𝑠 𝑡 = 3.0𝑠 𝑡 = 4.0𝑠 𝑡 = 5.0𝑠

Fig. 12. Animated results simulated using material parameters estimated by our method. The materials from top to bottom are thousand island dressing,
Cobb salad dressing, sesame dressing, Pomodoro sauce, and congee.
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Fig. 13. Comparison between flow curves. Dotted: measured by a rotational rheometer. Orange: estimated by using a single setup. Blue: estimated by
using two setups.

There are several limitations in our work. First, our method could
be inaccurate for thin materials that spread quickly after loading.
Such a material may need the handling of the surface tension as
well as accurate and rapid motion for opening the front panel. Sec-
ond, it would be hard to estimate the parameters for materials that
flow little. The range of the width and height of the setup implicitly
defines a range of shear rate for which the estimation is reliable
(which we believe covers the low to moderate shear rate range). It

would be an interesting future work to investigate this range quanti-
tatively. Third, although using multiple setups provided comparable
or better results than using only a single setup in general, there is
no guarantee that this is always the case.

For other future work, it would be beneficial to design an experi-
ment device to automate the setting of the dimensions, the opening
of the front panels, and the performance of the calibration. This
would further reduce the required manual workload. It would be
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also interesting to extend our work for elasticity (e.g., for capturing
the wiggling motion of a continuum foam), thixotropy, and other
constitutive relations, as well as to validate our work for shear thick-
ening materials. The incorporation of NeRF [Mildenhall et al. 2020]
or differentiable approaches would be a viable future work (e.g., for
handling general flows in the wild, possibly without even using an
experiment device). Our insights would be important for their de-
signs. A differentiable approach might be also viable for estimating
the Hessians.
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A PRINCIPLE OF MAXIMUM PLASTIC DISSIPATION
We briefly review the derivation of the flow rule by Simo and
Miehe [1992]. Following a Clausius–Plank form [Truesdell and Noll
1965] of the second law (in the push-forwarded configuration), we
have the following dissipation inequality (in this paper, we are omit-
ting material hardening/softening for simplicity):

D = 𝝉 : d − ¤𝜓 ≥ 0, (45)
where D is the dissipation rate, 𝝉 = 𝐽𝝈 is the Kirchhoff stress,
d is the shear rate tensor, and 𝜓 is the stored (or strain) energy
density. d is the symmetric part of the velocity gradient L = ∇𝒗:
d = sym[L] = L+L⊤

2 .
With (9), the time derivative of𝜓 is given by

¤𝜓 =
𝜕𝜓

𝜕be
: ¤be =

𝜕𝜓

𝜕be
:
(
Lbe + beL⊤ + L𝒗be

)
. (46)

Using 1) matrix identities A : (BC) = (AC⊤) : B and A : (BC) =
(B⊤A) : C, 2) the fact that be, 𝜕𝜓

𝜕be
and L𝒗be commute with each

other, and 3) the fact that 𝜕𝜓

𝜕be
and be are symmetric, we have

¤𝜓 =
𝜕𝜓

𝜕be
be :

(
L + L⊤ + (L𝒗be )be

−1 ) = 2 𝜕𝜓

𝜕be
be :

(
d + 1

2 (L𝒗be )be
−1
)
. (47)

Substituting into the definition of the dissipation rate, the second
law becomes

D =

(
𝝉 − 2 𝜕𝜓

𝜕be
be

)
: d +

(
2 𝜕𝜓

𝜕be
be

)
:
(
−1

2 (L𝒗be)be
−1

)
≥ 0.

(48)
Because the above inequality must be satisfied irrespective of the
shear rate tensor d, we must have

𝝉 = 2 𝜕𝜓

𝜕be
be, (49)

which immediately gives us (10). The second law then becomes

D = 𝝉 :
(
−1

2 (L𝒗be)be
−1

)
≥ 0. (50)

Simo and Miehe [1992] then introduce the principle of maximum
plastic dissipation, stating that for any stress �̃� ∈ 𝔈 within the
admissible elastic regime 𝔈 defined by the yield condition, 𝝉 must
satisfy

(𝝉 − �̃� ) :
(
−1

2 (L𝒗be)be
−1

)
≥ 0. (51)
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This implies that the flow
(
− 1

2 (L𝒗be)be−1
)
occurs in the direction

normal to𝔈, or in other words, normal to the yield functionΦ(𝝈 ;𝜎Y).
This gives rise to the associative flow rule (11).

B DISCRETE RETURN MAPPING
The treatment of the elasto-viscoplasticity [Simo and Hughes 1998;
Yue et al. 2015] at the𝑚-th simulation step consists of an explicit
elastic prediction step

be,pre = be,𝑚 + Δ𝑡 (L𝑚be,𝑚 + be,𝑚L⊤𝑚), (52)
where Δ𝑡 is the time step, followed by an implicit plastic correction
step discretizing (18):

be,𝑚+1 − be,pre = −Δ𝑡 ¤𝛾HB,𝑚+1
(√

2 dev[𝝈𝑚+1]
∥ dev[𝝈𝑚+1] ∥F

)
be,𝑚+1 . (53)

As in our supplementary material A §1, (53) can be solved using a
Newton method in the eigenspace of be. Computationally, it suffices
to introduce an approximation as in Simo [1988], for a more light
weight computation. Substituting be = 1

𝑑
tr[be]I+dev[be] into (18),

we have

L𝒗be = −¤𝛾HB
(√

2 dev[𝝈]
∥ dev[𝝈] ∥F

) (
1
𝑑

tr[be]I + dev[be]
)
. (54)

For 𝜇 sufficiently large, dev[be] is close to O, and ∥ dev[be] ∥F ≪
∥ 1
𝑑

tr[be]I∥F, so one can omit the second term in the right paren-
theses and have

L𝒗be ≈ −¤𝛾HB
√

2
𝑑

tr[be] dev[𝝈]
∥ dev[𝝈] ∥F

, (55)

resulting in a discrete form

be,𝑚+1 − be,pre ≈ −Δ𝑡 ¤𝛾HB,𝑚+1
√

2
𝑑

tr[be,𝑚+1] dev[𝝈𝑚+1]
∥ dev[𝝈𝑚+1] ∥F

.

(56)
We can then derive a return mapping similar to Yue et al. [2015]
(with slight modification in the coefficients), which amounts to solve
the following scalar equation for 𝜎s,𝑚+1:

𝜎s,𝑚+1 − 𝜎s,pre = −
√

2
𝑑

Δ𝑡
𝜇

𝐽
tr[be,pre] ©«

1√
2
𝜎s,𝑚+1 − 𝜎Y

𝜂
ª®¬

1/𝑛

, (57)

via a Newton method. The purple lines produced in Figure 5 is cre-
ated with this approach, indicating that the accuracy is sufficient
enough. We summarize the details in our supplementary material A
§1. In our supplementary material A §1, we also discuss the analyti-
cal form introduced by Fei et al. [2019].
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